• Title/Summary/Keyword: interglacial

Search Result 80, Processing Time 0.021 seconds

Estimation of Sediment Provenance Using Clay Mineral Composition in the Central Basin of the Ross Sea Continental Margin, Antarctica (남극 로스해 대륙주변부 중앙분지의 점토광물 조성을 통한 기원 추적)

  • Ha, Sangbeom;Khim, Boo-Keun;Colizza, Ester;Giglio, Federico;Koo, Hyojin;Cho, Hyen Goo
    • Ocean and Polar Research
    • /
    • v.41 no.4
    • /
    • pp.265-274
    • /
    • 2019
  • To trace the provenance of fine-grained sediments in response to the growth and retreat of glaciers (i.e., Ross Ice Sheet) that affects the depositional process, various kinds of analyses including magnetic susceptibility, granulometry, and clay mineral composition with AMS 14C age dating were carried out using a gravity core KI-13-GC2 obtained from the Central Basin of the Ross Sea continental margin. The sediments mostly consist of silty mud to sand with ice-rafted debris, the sediment colors alternate repeatedly between light brown and gray, and the sedimentary structures are almost bioturbated with some faint laminations. Among the fine-grained clay mineral compositions, illite is highest (59.1-76.2%), followed by chlorite (12.4-21.4%), kaolinite (4.1-11.6%), and smectite (1.2-22.6%). Illite and chlorite originated from the Transantarctic mountains (metamorphic rocks and granitic rocks) situated to the south of the Ross Sea. Kaolinite might be supplied from the sedimentary rocks of Antarctic continent underneath the ice sheet. The provenance of smectite was considered as McMurdo volcanic group around the Victoria Land in the western part of the Ross Sea. Chlorite content was higher and smectite content was lower during the glacial periods, although illite and kaolinite contents are almost consistent between the glacial and interglacial periods. The glacial increase of chlorite content may be due to more supply of the reworked continental shelf sediments deposited during the interglacial periods to the Central Basin. On the contrary, the glacial decrease of smectite content may be attributed to less transport from the McMurdo volcanic group to the Central Basin due to the advanced ice sheet. Although the source areas of the clay minerals in the Central Basin have not changed significantly between the interglacial and glacial periods, the transport pathways and delivery mechanism of the clay minerals were different between the glacial and interglacial periods in response to the growth and retreat of Ross Ice Sheet in the Ross Sea.

Reconstruction of Changes in Eolian Particle Deposition Across the Mid-Pleistocene Transition in the Central Part of the North Pacific (중기 플라이스토세 전이기 전후 북태평양 중앙 해역 퇴적물에 기록된 풍성 퇴적물 입자 퇴적 양상 변화 복원)

  • Lee, Sojung;Seo, Inah;Hyeong, Kiseong
    • Ocean and Polar Research
    • /
    • v.41 no.4
    • /
    • pp.275-288
    • /
    • 2019
  • We investigated flux, grain size distribution, Nd-Sr isotope composition, mineral composition, and trace metal composition (REEs and Sc) of inorganic silicate fraction (ISF, mainly Asian dust with an unrestricted amount of volcanic materials) deposited during 600~1000 ka across the Mid-Pleistocene Transition at core NPGP 1401-2A (32°01'N, 178°59'E, 5205m) taken from the central part of the North Pacific. Our results reveal about a 2-fold increase in ISF flux after 800 ka, which is associated with an increase in La/Sc and a decrease in mean grain size. Asian dusts are finer than volcanic materials and La/Sc increases with the enhanced contribution of Asian dusts. Thus, increased flux after 800 ka can be explained by the increased contribution of Asian dusts relative to volcanic materials, likely due to an intensified Westerly Jet (WJ) and the drying of the Asian continent after the MPT. Mean grain size of ISF varies systematically in relation to glacial-interglacial cycles with a decrease during glacial stages, which is consistent with the previous results in the study area. Such a cyclical pattern is also attributed to the increase in the relative contribution of Asian dusts over volcanic components in glacial stages due to intensified WJ and drying of the Asian continent. Thus, it can be concluded that climate changes that had occurred across the MPT were similar to those of interglacial to glacial transitions at least in terms of the dust budget. Different from the Shatsky Rise, however, compositional changes associated with glacial-interglacial mean grain size fluctuations are not observed in Nd-Sr isotope ratios and trace element composition in our study of the Hess Rise. This may be attributed to the location of the study site far (> 4,000 km) from the volcanic sources. The volcanic component at the study site comprises less than 10% and varies within 3% over glacial-interglacial cycles. Such a small variation was not enough to imprint geochemical signals.

Geomorphic Development of Marine Terraces at Jeongdongjin-Daejin area on the East Coast, Central Part of Korean Peninsula (한반도 중부 동해안 정동진, 대진지역의 해안단구 지형발달)

  • 윤순옥;황상일;반학균
    • Journal of the Korean Geographical Society
    • /
    • v.38 no.2
    • /
    • pp.156-172
    • /
    • 2003
  • In this paper we identify that there are High Higher surfaces(HH-surface) around Jeongdongjin and Daejin area where Higher surfaces(H-surface) of marine terrace are formed on a large scale. On the basis of an altitude of the ancient shoreline of the marine terraces, geomorphic surfaces can be classified into HH I (140m a.s.l), HH II (110m a.s.l), H I (90m a.s.l), H II (70m a.s.l), M (40m a.s.l), L I (25m a.s.l) and L II (10m a.s.l). Besides, we identify that the lowest surfaces(5~6m a.s.l) are found extensively in the research area which are assumed to be formed in the Holocene. Considering that the formation mechanism of the marine terraces in the research area is similar to that of the marine terraces at both Campo area in the south east coastal region of Korea md the thalassostatic terraces of Osip River in Samchuk in a short distance from the research area, we can assume that the HH-surfaces in both areas were formed in the same period. Based on the fact that L I- surface was formed on the Last Interglacial Stage of MIS 5, we can infer that M- was formed in MIS 7, H I- in MIS 9, H II- in MIS 11, HH I- in MIS 13 and HH II- in MIS 15. The reason for that H-surfaces, similar to those at Gampo area, to remain on a large scale is that the Holsteinian Interglacial continued for a long period of time and at that time there was a large wave-cut platform in the vicinity of the shoreline.

Characteristic Nature of the Unconformity between Holocene and Late Pleistocene in the Tidal Deposits along the Western Coast of Korea

  • Park, Yong-Ahn
    • The Korean Journal of Quaternary Research
    • /
    • v.17 no.2
    • /
    • pp.13-14
    • /
    • 2003
  • It is generally well known that Quaternary is characteristic geologically in terms of glacial and interglacial repeats and their associated unconformity formation. This paper deals with the first finding of the characteristic and significant meaningful unconformity between Holocene and late Pleistocene, which implies submergence and emergence of the tidal sedimentary basin along the western coastal zone of Korea during interglacial stage(IOS-5e) and glacial time(IOS-2). The stratigraphy of intertidal deposits in the Haenam Bay, western coast of Korea shows two depositional sequence units (Unit I of Holocene and Unit II of late Pleistocene) bounded by an erosional surface of disconformity. The disconformity is related to the latest Pleistocene sea-level lowstands (probably during the LGM). The Unit II is interpreted as intertidal deposit showing tidal sedimentary structures and crab burrow ichnology and has two parts (the upper part and the lower part) showing different lithology and character. The upper part of Unit II shows characteristic subaerial exposure features (emergence) and its related lithology. Such subaerially exposed upper part (more or less 4m to 5m in thickness) is characterized by yellow-brownish sediment color, cryoturbat-ed structure, crab burrow ichnofacies and high value of shear strength. Geochemical and clay mineral analyses of the upper part sediments also indicate subaerial exposure and weathering. In particular, very high value of magnetic susceptibility of the upper part in comparison to that of the lower part is interpreted as pedogenetic weathering during the subaerial exposure period.

  • PDF

Fluvial Terraces of the Lower Yeongsan River, Southwestern Coastal Region of Korean Peninsula (영산강 하류 지역의 하안단구)

  • Choi, Seong-Gil
    • The Korean Journal of Quaternary Research
    • /
    • v.18 no.1 s.22
    • /
    • pp.41-46
    • /
    • 2004
  • The fluvia(thalassostatic) terraces have been developed among the lower Yeongsan river, near the southwestern coastal region of Korean peninsula. These thalassostatic terraces could be classified into 3 surface, i. e., Yeongsan 32m, 18m, and 10m surface, in desending order, according to the relative heights from the river floor. Yeongsan 32m, 18m and 10m surfaces were corresponded to the mMT3, mLT1 and mLT2 surfaces of Choi(2003), respectively. It was revealed that the mLT1 surface was the marine terraces which had been formed in the Last Interglacial culmination period(oxygen isotope stage 5e) in the southeastern coast of Korean peninsula.

  • PDF

Quaternary Sea Levels Estimated from River Terraces of the Ungcheon River, Midwestern Coast of South Korea (態川川流域의 河成段丘로부터 推定되는 舊汀線高度와 그 意義, 韓國 西海岸의 第四紀 環境變化 究明에 있어서 臨海山岳地域 小河川 河成段丘 硏究의 重要性 考察)

  • Choi, Seong-Gil
    • Journal of the Korean Geographical Society
    • /
    • v.31 no.3
    • /
    • pp.613-629
    • /
    • 1996
  • River terraces of glacial and interglacial periods are most developed in the Ungcheon River, midwestern coastal region of south Korea. Among these terraces, interglacial river terraces correspond to the thalassostatic terraces of eastern coastal region of Korea. Thus the former shoreline altitudes of the coastal region around Ungcheon River can be estimated by using relative heights of these interglacial thalassostatic terraces of Ungcheon River The former shoreline altitudes estimated from interglacial thalassostatic terraces of Ungcheon River are 80m, 50${\sim}$60m, 40${\sim}$45m, 30m, 25m(?), 15${\sim}$20m, and 10m. These estimates are almost identical with those of Quaternary sea levels of eastern coastal region. Among the above estimates of Ungcheon River, the former shoreline altituded of 15~20m and 10m correspond to the ancient sea levels of $\pm$18m and $\pm$10m of eastern coastal region which were injudged as the last interglacial culmination period and late warmer period of the last interglacia(5e and 5a substages of oxygen isotope stage), respectively. Therefore there is a possibility that the rest of the above former shoreline altitudes of the coastal region aroune Jngcheon River also correspond to those of eastern coastal region. On the basis of the above possibility it can be proposed that the eastern and western coastal region of Korean Peninsula have undergone tectonic uplift of equall amount since the middle Quaternary Period.

  • PDF

Marine Terraces of the Eastern Coast of Korean Peninsula

  • Park, Seong-Gil
    • The Korean Journal of Quaternary Research
    • /
    • v.17 no.2
    • /
    • pp.15-15
    • /
    • 2003
  • In South Korea, marine terraces have been well developed along the eastern coastal zone, and previous researches on the marine terraces have also been focused on to this coastal zone. The marine terraces of the eastern coast of South Korea had been classified into three terrace groups, that is, the higher, middle, and lower surface ones, according to the heights of marine terraces by previous studies(Oh, 1981 ;Chang, 1987 ;Yoon et. al, 1999, 2003 ; Hwang and Yoon, 1996 etc.). Recently, however, it tends to classify the marine terraces based on the concept of geomorphic surface units(Lee, 1987 ; Kim, 1990 ; Choi, S. 2003; Choi S. et. al 2003a,b, etc). For example, it was proposed that the marine terrace surfaces of Eupcheon coast of the southeastern coastal area of Korea could be classified into 16 geomorphic surfaces, i.e., Eupcheon 1terrace(former shoreline height of 160m), 2(153m), 3(140m), 4(130m), 5(124m), 6(115m), 7(100m), 8(92m), 9(82m), 10(71m), 11(62m), 12(53m), 13(43m), 14(35m), 15(18m) and 16(10m) surfaces, in descending order, according to the former shoreline heights(Choi, S, 2003 ; Choi, S. et. al, 2003a,b). Among these terraces, Eupcheon 1, 2, 4, 5 and 7 surfaces had not been reported in previous works. Among the above mentioned marine terraces, Eupcheon 15 terrace, the most widely and continuously distributed marine terrace have been identified as marine terrace of the Last Interglacial culmination period(oxygen isotope stage 5e) which was based on amino acid dates(124∼125ka BP) and geomorphological features such as red soil, pollen analysis, fossil cryogenic structures and crossing terrace concept. Eupoheon 15 terrace surfaces have also been proposed as the key surface for the identification and correlation of the so-called '5e' marine terrace in the eastern coast of South Korea. This terrace was reconfirmed as the Last Interglacial culmination period, which was based on the identification of Ata tephra, one of the wide-spread marker tephra which indicates the Last Interglacial culmination period in Japan by Sasaki et. al(2002). It was thought that marine terraces of the eastern coast of South Korea had been formed by the steady-state uplifting during the Quaternary glacio-eustatic sea level changes(Choi, 1997). The uprift rate of 10cm/1,000years had been proposed in the eastern coast of South Korea based on the former shoreline altitude(18m) of the above Eupcheon 15 terrace. Therefore, it can be estimated that Eupcheon 1 terrace had been formed in the early Pleistocene from the above uprift rate. The OSL dating for the samples of Eupcheon 7, 9, 13, 15 and 16 terraces and identification of marker tephra in the terrace deposits are in progress. It is expected that more elaborate chronology on themarine terraces of the eastern coast of South Korea could be established by these absolute dates and marker-tephra.

  • PDF

Late Quaternary Paleoenvironmental Changes in the Western Nakdong River delta (낙동강 삼각주 서부지역의 제4기 후기 고환경 변화)

  • Ryu, Choon-Kil;Kang, Sora;Chung, Sung-Gyo
    • Journal of the Korean earth science society
    • /
    • v.26 no.5
    • /
    • pp.443-458
    • /
    • 2005
  • Late Quaternary deposits of the core in the western area of the Nakdong River delta consist of four sedimentary units: Unit I, II, III and IV, in ascending order, controlled by the sea-level change since the last interglacial period. Unit I unconformable overlying Cretaceous basement rocks is composed of sandy gravel and sand deposited in a fluvial channel before the first marine transgression. Unit II composed of stiff massive mud is interpreted as a shallow marine deposits formed during the last interglacial period (probably MIS 5). The development of the fissures coated with oxidized materials in the upper part of Unit II is a feature of subaerial exposure, which indicates erosional contact with the upper Unit III. Unit III is made up of soft massive mud and soft shelly massive mud deposited in a tidal flat and a inner shelf, respectively, since the Holocene transgression (about 9,000 yr BP). Unit Ⅳ consisted of soft shell bedded mud and yellowish sandy mud was deposited in the delta environments during the regression (after about 5,000 yr BP). The lower shell bedded mud was deposited in a tidal flat and the upper sandy mud was deposited in the floodplain corresponding to present site of the Nakdong River delta.

The estimation of the marine terrace of the Last Interglacial culmination stage(MIS 5e) in the Sanhari of Ulsan coast,southeastern Korea (울산 해안의 최종간빙기 최온난기 추정 해성단구)

  • Choi, Seong-Gil
    • Journal of The Geomorphological Association of Korea
    • /
    • v.23 no.2
    • /
    • pp.47-59
    • /
    • 2016
  • The formation age and depositional environment of the marine terrace I of the estimated paleoshoreline altitude of 18m in Sanhari of Ulsan coast, southeastern Korea were investigated on the basis of examination of lithofacies and stratigraphy of terrace deposits. Marine deposits of the terrace is composed of rounded boulders(70cm in diameter) and rounded pebbles(1.0cm in diameter) which overlay them. The above rounded boulders which lie on the paleo-shore platform are considered to have been formed by wave abrasion in the same period that the paleo-shore platform was developed. The rounded pebbles which lie on the rounded boulder layer are considered to have been deposited in gravel beach and berm environment, judging from the laminae developed in this layer. The paleo-shore platform and marine rounded gravel layer of the terrace are assumed to have been formed in the large transgression period of the Last Interglacial culmination stage(MIS 5e), judging from the comparision of the formation age of 125ka B.P. of Juckcheon terrace I in the adjacent Pohang coast which was dated by amino acid dating. The terrestrial deposit of this terrace was largely composed of angular and subangular gravel mixed with marine rounded pebble which has been carried away mainly from the deposit of previous marine terraces and redeposited in this terrace. The lowest peat layer of terrastrial deposit was considered to have been deposited during the period from the late MIS 5e which is the estimated finishing time of deposition of the above marine gravels to the early stage of following regression period(MIS 5d) in which the sea level was still high. The sediments of angular and subangular gravel deposit which lie on this peat layer were assumed to have been deposited during the period from the early stage of the first regression period(MIS 5d) of the Last Interglacial to the Last Glacial. The lower part of the angular gravel layer is composed of the deposits of the fluvial and colluvial sediments, whereas most of the upper and middle part of the layer is mainly composed of angular gravels of colluvial sediments formed in the cold environment.

Analysis of Changes in Paleoenvironment using Diatoms from Iselin Bank in the Ross Sea (로스해 Iselin Bank에서 규조를 이용한 고해양 환경변화 해석)

  • Bak, Young-Suk;Kim, Sunghan;Lee, Jae Il;Yoo, Kyu-Cheul;Lee, Min Kyung
    • Journal of the Korean earth science society
    • /
    • v.42 no.6
    • /
    • pp.677-687
    • /
    • 2021
  • In this study, we analyzed diatoms from core RS15-GC41 collected in Iselin Bank, Ross Sea. A total of 24 genera and 35 species of diatoms are identified, and the having valve abundance of diatoms varies from 0.2 to 28.6×106/g. Four diatom assemblage zones are established by the vertical distribution of diatoms, and changed with a cycle of 100 kyrs. RS15-GC41 were deposited over the last 400 kyrs (corresponding to Marine Isotope Stages 1-11). The open-water species Fragilariopsis kerguelensis, Rhizosolenia styliformis, and Thalassionema nitzschioides abundantly occurred in interglacial periods. Whereas, Actinocyclus actinochilus abundantly dominant during the glacial periods. The distribution of these diatoms indicated, it can be seen that the sea-ice extent was larger and lasted longer during MIS 7, 9, and 11 than that of MIS 1, 3, and 5. Moreover, Paralia sulcata was abundantly predominant in MIS 7, 9, and 11; this finding suggests likely indicating that P. sulcata was transported from the coastal/inner shelf area to the study site, during accumulated in the sediments, reworked with the influx of ice-rafted debris by the currents