• Title/Summary/Keyword: interference correction factor

Search Result 34, Processing Time 0.023 seconds

Estimation of Angular Location and Directivity Compensation of Split-beam Acoustic Transducer for a 50 kHz Fish Sizing Echo Sounder (50 kHz 체장어군탐지기용 분할 빔 음향 변환기의 지향성 보정 및 위치각 추정)

  • Lee, Dae-Jae
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.44 no.4
    • /
    • pp.423-430
    • /
    • 2011
  • The most satisfactory split-beam transducer for fish sizing maintains a wide bearing angle region for correct fish tracking without interference from side lobes and lower sensitivity to fish echoes outside of the main lobe region to correctly measure the angular location of free-swimming fishes in the sound beam. To evaluate the performance of an experimentally developed 50 kHz split-beam transducer, the angular location of a target was derived from the electrical phase difference between the resultant signals for the pair of transducer quadrants in the horizontal and vertical planes consisting of 32 transducer elements. The electrical phase difference was calculated by cross-spectral density analysis for the signals from the pair of receiving transducer quadrants, and the directivity correction factor for a developed split-beam transducer was estimated as the fourth-order polynomial of the off-axis beam angle for the angular location of the target. The experimental results demonstrate that the distance between the acoustic centers for the pair of receiving transducer quadrants can be controlled to less than one wavelength by optimization with amplitude-weighting transformers, and a smaller center spacing provides a range of greater angular location for tracking of a fish target. In particular, a side lobe level of -25.2 dB and an intercenter spacing of $0.96\lambda$($\lambda$= wavelength) obtained in this study suggest that the angular location of fish targets distributing within a range of approximately ${\pm}28^{\circ}$ without interference from side lobes can be measured.

Analysis and Design of a DC-Side Symmetrical Class-D ZCS Rectifier for the PFC of Lighting Applications

  • Ekkaravarodome, Chainarin;Thounthong, Phatiphat;Jirasereeamornkul, Kamon;Higuchi, Kohji
    • Journal of Power Electronics
    • /
    • v.15 no.3
    • /
    • pp.621-633
    • /
    • 2015
  • This paper proposes the analysis and design of a DC-side symmetrical zero-current-switching (ZCS) Class-D current-source driven resonant rectifier to improve the low power-factor and high line current harmonic distortion of lighting applications. An analysis of the junction capacitance effect of Class-D ZCS rectifier diodes, which has a significant impact on line current harmonic distortion, is discussed in this paper. The design procedure is based on the principle of the symmetrical Class-D ZCS rectifier, which ensures more accurate results and provides a more systematic and feasible analysis methodology. Improvement in the power quality is achieved by using the output characteristics of the DC-side Class-D ZCS rectifier, which is inserted between the front-end bridge-rectifier and the bulk-filter capacitor. By using this symmetrical topology, the conduction angle of the bridge-rectifier diode current is increased and the low line harmonic distortion and power-factor near unity were naturally achieved. The peak and ripple values of the line current are also reduced, which allows for a reduced filter-inductor volume of the electromagnetic interference (EMI) filter. In addition, low-cost standard-recovery diodes can be employed as a bridge-rectifier. The validity of the theoretical analysis is confirmed by simulation and experimental results.

LED PSU using an Integrated Transformer of New Shape (새로운 형상의 통합변압기적용 LED PSU)

  • Joo, Jong-Seong;Lee, Young-Soo;Heo, Ye-Chang;Kim, Eun-Soo;Hwang, In-Gab
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.22 no.1
    • /
    • pp.27-35
    • /
    • 2017
  • In this study, an integrated 2-in-1 transformer for a low-weight and low-cost light-emitting diode lighting power supply is proposed. In the transformer, a power factor correction (PFC) inductor and an LLC resonant transformer are placed and integrated on a single magnetic core. The amount of mutual interference, represented by the coupling coefficient, between magnetic fluxes generated from each magnetic source is minimized by using the new shape core of an integrated 2-in-1 transformer. The design consideration on critical conduction mode PFC converter and LLC resonant converter using the proposed 2-in-1 integrated transformer is described, and the overall performance of the 150 W LED PSU shown through the experiment.

DESIGN OF LSDS FOR ISOTOPIC FISSILE ASSAY IN SPENT FUEL

  • Lee, Yongdeok;Park, Chang Je;Kim, Ho-Dong;Song, Kee Chan
    • Nuclear Engineering and Technology
    • /
    • v.45 no.7
    • /
    • pp.921-928
    • /
    • 2013
  • A future nuclear energy system is being developed at Korea Atomic Energy Research Institute (KAERI), the system involves a Sodium Fast Reactor (SFR) linked with the pyro-process. The pyro-process produces a source material to fabricate a SFR fuel rod. Therefore, an isotopic fissile content assay is very important for fuel rod safety and SFR economics. A new technology for an analysis of isotopic fissile content has been proposed using a lead slowing down spectrometer (LSDS). The new technology has several features for a fissile analysis from spent fuel: direct isotopic fissile assay, no background interference, and no requirement from burnup history information. Several calculations were done on the designed spectrometer geometry: detection sensitivity, neutron energy spectrum analysis, neutron fission characteristics, self shielding analysis, and neutron production mechanism. The spectrum was well organized even at low neutron energy and the threshold fission chamber was a proper choice to get prompt fast fission neutrons. The characteristic fission signature was obtained in slowing down neutron energy from each fissile isotope. Another application of LSDS is for an optimum design of the spent fuel storage, maximization of the burnup credit and provision of the burnup code correction factor. Additionally, an isotopic fissile content assay will contribute to an increase in transparency and credibility for the utilization of spent fuel nuclear material, as internationally demanded.

A 6.6kW Low Cost Interleaved Bridgeless PFC Converter for Electric Vehicle Charger Application (전기자동차 응용을 위한 6.6KW 저가형 브리지 없는 인터리빙 방식의 역률보상 컨버터)

  • Do, An-Ban-Tu-An;Choe, U-Jin
    • Proceedings of the KIPE Conference
    • /
    • 2017.07a
    • /
    • pp.24-25
    • /
    • 2017
  • In this paper, a low cost bridgeless interleaved power factor correction topology for electric vehicle charger application is proposed. With the proposed topology the number of switches, inductors, current sensors and associated circuits can be reduced, thereby reducing the cost of the system as compared to the conventional bridgeless PFC circuit. The reduced input current ripple by the proposed interleaved topology makes it suitable for high power applications such as electric vehicle chargers since it can reduce the size of the inductor core and the Electro Magnetic Interference (EMI) problem. In the proposed topology only one current sensor is required. All the boost inductor currents can be reconstructed by sampling the output current and used to control the input current. Therefore the typical problem caused by the unequal current gain of each current sensor inherently does not exist in the proposed topology. In addition the current sharing between converters can be achieved more accurately and the high frequency distortion is decreased. The performance of the proposed converter is verified by the experimental results with a prototype of 6.6kW bridgeless interleaved PFC circuit.

  • PDF

Study on Radiation Limit of ISM Equipment for Protecting Radio Device (무선기기 보호를 위한 ISM 기기의 방사 한계치에 관한 연구)

  • Shim, Yong-Sup;Lee, Il-Kyoo;Hong, Seon-Eui
    • Journal of Satellite, Information and Communications
    • /
    • v.6 no.2
    • /
    • pp.10-14
    • /
    • 2011
  • This paper suggests the method to calculate radiation limit of ISM(Industrial Scientific Medical) equipment in order to protect radio device in the situation that ISM equipment and radio device are operated in near distance. The factor for correction and protection ratio which is need for protecting radio device were considered to calculate radiation limit of ISM equipment. Also, the scenario which is required to limit radiation power of ISM equipment was referred and the S/W for calculation of radiation limit was developed by using GUI(Graphical User Interface) on Matlab. The suggested method for calculation of radiation limit of ISM equipment will be used to protect radio device from ISM equipment.

EMI Prediction and Reduction of Zero-Crossing Noise in Totem-Pole Bridgeless PFC Converters

  • Zhang, Baihua;Lin, Qiang;Imaoka, Jun;Shoyama, Masahito;Tomioka, Satoshi;Takegami, Eiji
    • Journal of Power Electronics
    • /
    • v.19 no.1
    • /
    • pp.278-287
    • /
    • 2019
  • In this study, a zero-crossing spike current issue in a totem-pole bridgeless power factor correction (PFC) converter is comprehensively investigated for the first time. Spike current occurs when input voltage crosses zero, becomes a noise source, and causes severe common mode emission issues. A generation mechanism for electromagnetic interference (EMI) is presented to investigate the EMI problem caused by zero-crossing issue, and a noise spectrum due to this issue is predicted by a theoretical analysis based on the Fourier coefficient of an approximate spike current waveform. Furthermore, a noise reduction method is proposed and then improved to reduce the spike current. Experimental measurements are implemented on a GaN-based totem-pole bridgeless PFC converter, and the spike current can be effectively suppressed through the proposed method. Furthermore, the noise spectrums measured without and with the reduced zero-crossing spike current are compared. Experimental results validate the analysis of the noise spectrum caused by the zero-crossing spike current issue.

Evaluation of peak-fitting software for magnesium quantification through k0-instrumental neutron activation analysis

  • Dasari, Kishore B.;Cho, Hana;Jacimovic, Radojko;Park, Byung-Gun;Sun, Gwang-Min
    • Nuclear Engineering and Technology
    • /
    • v.54 no.2
    • /
    • pp.462-468
    • /
    • 2022
  • The selection and effective utilization of peak-fitting software for conventional gamma-ray spectrum analysis is significant for accurate determination of the mass fraction of elements, particularly in complex peak regions. Majority of the peak-fitting programs can derive similar peak characteristics for singlet peaks, but very few programs can deconvolute multi-peaks in a complex region. The deconvolution of multi-peaks requires special peak-fitting functions, such as left and right-skew distributions. In the this study, 843.76 keV (27Mg) peak area from the complex region (840 keV-850 keV) determined and compared using four different peak-fitting programs, namely, GammaVision, Genie2000, HyperLab, and HyperGam. The 843.76 keV peak interfered with 841.63 keV (152mEu) and 846.81 keV (56Mn). The total Mg concentration was determined through k0-instrumental neutron activation analysis by applying the isotopic interference correction factor 27Al(n,p)27Mg through the simultaneous determination of Al concentration. HyperLab and HyperGam peak-fitting programs reported consistent peak areas, and resultant concentrations agreed with the certified values of matrix-certified reference materials.

Compensation Method of eLoran Signal's Propagation Delay and Performance Assessment in the Field Experiment

  • Son, Pyo-Woong;Fang, Tae Hyun;Park, Sul Gee;Han, Younghoon;Seo, Kiyeol
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.11 no.1
    • /
    • pp.23-28
    • /
    • 2022
  • The eLoran system is a high-power terrestrial navigation system that is recognized as the most appropriate alternative to complement the GNSS's vulnerability to radio frequency interference. Accordingly, Korea has conducted eLoran technology development projects since 2016. The eLoran system developed in Korea provides 20 m positioning accuracy to maritime user in Incheon and Pyeongtaek harbor. To accurately calculate the position with the eLoran signal, it is necessary to apply a compensation method that mitigates the propagation delay. In this paper, we develop the compensation method to mitigate the eLoran signal propagation delay and evaluate the positioning performance in Incheon harbor. The propagation delay due to the terrain characteristics is pre-surveyed and stored in the user receiver. Real-time fluctuations in propagation delay compared to the pre-stored data are mitigated by the temporal correction generated at a nearby differential Loran station. Finally, two performance evaluation tests were performed to verify the positioning accuracy of the Korean eLoran system. The first test took place in December 2020 and the second in April 2021. As a result, the Korean eLoran service has been confirmed to provide 20 m location accuracy without GPS.

The Development of Electric Ballast for a Instant Start/Restart of Metalhalide Lamp (메탈핼라이드램프용 순시점등/재점등 전자식안정기 개발)

  • Kim, Su-Kyoung;Jang, Woo-Jin
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.18 no.5
    • /
    • pp.9-15
    • /
    • 2004
  • The most shortcoming of metalhalide lamps is what the instant restarting cannot be realized when the arc tube is in the hot condition. The discharge starting voltage of arc tube in the hot condition is much higher than in the cold condition. Therefore it takes about five minutes to restart the metalhalide lamps, that is to say, it is possible to start when the pressure and the temperature are decreased. But, if the lamp is restarted in the hot condition, we must supply the high voltage pulse with 20[kV] at the both electrode of lamp. The proposed electronic ballast is consist of a electromagnetic interference(EMI) filter, a power factor correction(PFC) circuit, a flyback converter, a half-bridge inverter, and a high voltage igniter circuit. By this composition we can start/restart the lamp with the voltage 20[kV], even if the lamp is in the hot condition.