• Title/Summary/Keyword: interface roughness

Search Result 325, Processing Time 0.024 seconds

Chemical Mechanical Polishing (CMP) Characteristics of Ferroelectric Film (강유전체막의 CMP 연마 특성)

  • Seo, Y.J.;Park, S.W.;Kim, K.T.;Kim, C.I.;Chang, E.G.;Kim, S.Y.;Lee, W.S.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.140-143
    • /
    • 2003
  • BST thin films have a good thermal-chemical stability, insulating effect and variety of phases. However, BST thin films have problems of the aging effect and mismatch between the BST thin film and electrode. Also, due to the high defect density and surface roughness at grain boundarys and in the grains, which degrades the device performances. In order to overcome these weakness, we first applied the chemical mechanical polishing (CMP) process to the polishing of ferroelectric film in order to obtain a good planarity of electrode/ferroelectric film interface. BST ferroelectric film was fabricated by the sol-gel method. And then, we compared the structural characteristics before and after CMP process of BST films. We expect that our results will be useful promise of global planarization for FRAM application in the near future.

  • PDF

A Study on the Toothbrush-Dentifrice Abrasion of Class V Restroations (치경부 5급 와동 수복의 잇솔질 마모에 관한 연구)

  • Hwang, Su-Jin;Yu, Mi-Kyung;Lee, Kwang-Won
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.21 no.1
    • /
    • pp.69-81
    • /
    • 2005
  • The objective of this study was to evaluate the toothbrush abrasion characteristics of class V restorations. Thirty extracted human premolars, which were collected from oral surgery clinics were used. We mounted five teeth in a metal ring mold of 50 mm in diameter and 15 mm in height using chemically cured acrylic resin. Class V cavities were prepared in lingual cervical root surfaces and restored using one of following restorative materials : Dentin Conditioner/Fuji II LC (Group FL), All Bond II/Z-250 (Group ZT), One-up Bond F/Palfigue Estelite (Group PE), F2000 Primer/Adhesive (Group FT), and Prime & Bond 2.1/Dyract AP (Group DR). They were stored under distilled water at $37^{\circ}C$ for seven days. The toothbrush abrasion test was conducted using a wear testing machine of pin-on disk type under a load of 1.5 N for 100,000 cycles. We have examined the bonded interfaces, the changes of surface roughness and color of abraded surfaces. From this experiment, the following results were obtained. 1. The change of surface roughness showed high degree: RMGIC>compomer>composite resin (p<0.05). 2. Because of the protrusion and missing of filler particles, SEM observation of abraded surfaces of RMGIC and compomers revealed the increase of surface roughness due to the selective removal of matrix resin. 3. The color change by toothbrush abrasion was affected in large part by the change of $L^*$ and $b^*$ of resin composites (p<0.05). 4. The color change by toothbrush abrasion was so small to detect by human eyes. 5. SEM observation of abraded surfaces revealed the interface bonding was the best in the FT group.

ON THE BONE TISSUE REACTION TO IMPLANTS WITH DIFFERENT SURFACE TREATMENT METHODS (임플랜트 표면 처리 방법에 따른 골조직 반응에 대한 연구)

  • Kim, Yong-Jae;Cho, In-Ho
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.45 no.1
    • /
    • pp.71-84
    • /
    • 2007
  • Statement of problem: Implant surface characteristics plays an important role in clinical success and many studies have been made for improvement of success by changing surface roughness. Purpose: Appropriate increase of surface roughness increases the activity of osteoblast and enhance contact and retention between bone and implant. Material and method- Machined, SLA and RBM surface implants, which are the most commonly used implants were implanted into the tibia of rabbits and after 1 week, 4 weeks, 8 weeks and 12 weeks there were histologic and histomorphometric analysis and study for bone gradient and change of Ca/P ratio using EDS(Energy Dispersive X-ray Spectroscope). Results: Comparison of bone-implant contact showed no significant difference among each implant. In comparison of bone area rates, SLA showed higher value with significant difference at 1 week and 4 weeks, and SLA and RBM at 8 weeks than Machined implant (p<0.05). In analysis of bone constituents with EDS, titanium was specifically detected in new bones and the rates were constant by surface treatment method or period. In case of Ca/P ratio, according to surface treatment method, each group showed significant difference. Lots of old bone fragments produced during implantation remained on the rough surface of RBM implant surface and each group showed histological finding with active synthesis of collagen fibers until 12 weeks. In transmission electronic microscopic examination of sample slice after elapse of twelve weeks, tens nm of borderline (lamina limitans like dense line)was seen to contact the bone, on the interface between bone and implant. Conclusion: SLA and RBM implant with rough surface shows better histomorphometrical result and the trend of prolonged bone formation and maturation in comparison with Machined implant. In addition, implant with rough surface seems to be helpful in early stage bone formation due to remaining of old bone fragments produced in implantation. From the results above, it is considered to be better to use implant with rough surface in implantation.

The Flexural Behavior including Ductility of Half Precast Concrete Slab with Welded Deformed Wire Fabric (용접철망을 사용한 반두께 P.C.슬래브의 휨 및 연성거동)

  • 이광수;최종수;조민형;신성우
    • Magazine of the Korea Concrete Institute
    • /
    • v.6 no.4
    • /
    • pp.153-160
    • /
    • 1994
  • Ten Half precast concrete slabs reinforced with welded deformed wire fabric were tested under two concentrated loads to investigate the flexural moment and ductile capacity. The test variables were the compressive strength of topping concrete, quantitative roughness, and reinforcernent ratio. The effects of each test variables were studied separately. Test results were as followings. The ultimate strength design method is applicable to predict flexural strength for Half P.C. concrete slab with welded deformed wire fabric and quantitative roughness. It is proper to consider 0.0035 strain ;is yielding stress of the welded deformed wire fabric. The ductility index of Half precast concrete slab with welded deformed wire fabric showed lower value. Therefore to enhance the ductility capacity the normal defomed bar should be used with the welded deformed wire fabric for the longitudinal reinforcement.

Interfacial Adhesion Properties of Oxygen Plasma Treated Polyketone Fiber with Natural Rubber (폴리케톤 섬유의 산소 플라즈마 처리에 따른 천연고무와의 계면접착 특성)

  • Won, Jong Sung;Choi, Hae Young;Yoo, Jae Jung;Choi, Han Na;Yong, Da Kyung;Lee, Seung Goo
    • Journal of Adhesion and Interface
    • /
    • v.13 no.1
    • /
    • pp.45-50
    • /
    • 2012
  • Recently developed polyketone fiber has various applications in the mechanical rubber goods as reinforcement because of its good mechanical properties. However, its surface is not suitable for good adhesion with the rubber matrix. Thus, a surface modification is essential to obtain the good interfacial adhesion. Plasma treatment, in this study, has been conducted to modify the surface of the polyketone fiber. The morphological changes of the fibers by oxygen plasma treatment were observed by using SEM and AFM. The chemical composition changes of PK fiber surface treated with oxygen plasma were investigated using an XPS (X-ray photoelectron spectroscopy). Finally, the effect of these changes on the interfacial adhesion between fiber and rubber was analyzed by using a microdroplet debonding test. By the plasma treatment, oxygen moieties on the fiber surface increased with processing time and power. The surface RMS roughness increases until the proper processing condition, but a long plasma processing time resulted in a rather reduced roughness because of surface degradation. When the treatment time and power were 60 s and 80 W, respectively, the highest interfacial shear strength (IFSS) was obtained between the PK fiber and natural rubber. However, as the treatment time and power were higher than 60 s and 80 W, respectively, the IFSS decreased because of degradation of the PK fiber surface by severe plasma treatment.

Interface Structure and Thin Film Adhesion (계면구조와 박막의 접착)

  • Lee, Ho-Young;Kim, Sung-Ryong
    • Journal of Adhesion and Interface
    • /
    • v.3 no.4
    • /
    • pp.37-43
    • /
    • 2002
  • A number of thin-film deposition technologies have been developed. However, even a thin film whose properties are excellent may not be used as long as the adhesion strength between the thin film and the substrate is poor. For thin films, the adhesion strength is as important as the properties. In the present article, relation between interface structure and thin film adhesion, and factors affecting thin film adhesion are reviewed. Two kinds of factors, internal factors and external factors, affect thin film adhesion. Such factors as composition, structure, and reactivity of both thin film and substrate as well as surface roughness of the substrate and residual stress of the thin film belong to internal factors. And such factors as load, temperature, humidity, and corrosive environment belong to external factors. It is also reviewed that how we can control the internal factors and the external factors to enhance or keep the adhesion strength.

  • PDF

A Study on the Interface and Luminescent Properties of OLED using $Al_2Nq_4$ as an Emitting Layer ($Al_2Nq_4$를 발광층으로 이용한 OLED의 계면 및 발광 특성에 관한 연구)

  • Yang, Ki-Sung;Lee, Ho-Sik;Shin, Hoon-Kyu;Kim, Doo-Seok;Kim, Chung-Kyun;Kwon, Young-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2004.11a
    • /
    • pp.215-219
    • /
    • 2004
  • Metal-chelate derivatives have been investigated intensively as an emitting layer and recognize to have excellent electroluminescence(EL) properties. We synthesized new luminescent material, 1,4-dihydoxy-5,8-naphtaquinone $Aiq_3$ complex($Al_2Nq_4$) and investigated the electrical optical properties. OLED has potential candidates for information display with merits of thickness, low power and high efficiency. Although the OLED show a lot of advantages for information display, it has the limit of inorganic(metal)/ organic interface. In this study, the two methods are used to study the interface of metal/organic in OLED. First, we treated $O_2$ plasma on an ITO thin film by using RIE system, and analyzed the ingredient of ITO thin film according to change of the processing conditions. We used the RDS and the XPS for the ingredient analysis of the surface and bulk. We measured electrical resistivity using Four-Point-Probe and calculated sheet resistance, and ITO surface roughness was measured by using AFM. We fabricated OLED using substrate that was treated optimum ITO surface. Second, we used the buffer layer of CuPc to improve the characteristics of the interface and the hole injection in OLED. The result of the study for electrical and optical properties by using I V L T System(Flat Panel Display Analysis System), we confirmed that the electrical properties and the luminance properties were improved.

  • PDF

The Characteristics of the Wafer Bonding between InP Wafers and $\textrm{Si}_3\textrm{N}_4$/InP (Direct Wafer Bonding법에 의한 InP 기판과 $\textrm{Si}_3\textrm{N}_4$/InP의 접합특성)

  • Kim, Seon-Un;Sin, Dong-Seok;Lee, Jeong-Yong;Choe, In-Hun
    • Korean Journal of Materials Research
    • /
    • v.8 no.10
    • /
    • pp.890-897
    • /
    • 1998
  • The direct wafer bonding between n-InP(001) wafer and the ${Si}_3N_4$(200 nm) film grown on the InP wafer by PECVD method was investigated. The surface states of InP wafer and ${Si}_3N_4$/InP which strongly depend upon the direct wafer bonding strength between them when they are brought into contact, were characterized by the contact angle measurement technique and atomic force microscopy. When InP wafer was etched by $50{\%}$ HF, contact angle was $5^{\circ}$ and RMS roughness was $1.54{\AA}$. When ${Si}_3N_4$ was etched by ammonia solution, RMS roughness was $3.11{\AA}$. The considerable amount of initial bonding strength between InP wafer and ${Si}_3N_4$/InP was observed when the two wafer was contacted after the etching process by $50{\%}$ HF and ammonia solution respectively. The bonded specimen was heat treated in $H^2$ or $N^2$, ambient at the temperature of $580^{\circ}C$-$680^{\circ}C$ for lhr. The bonding state was confirmed by SAT(Scannig Acoustic Tomography). The bonding strength was measured by shear force measurement of ${Si}_3N_4$/InP to InP wafer increased up to the same level of PECVD interface. The direct wafer bonding interface and ${Si}_3N_4$/InP PECVD interface were chracterized by TEM and AES.

  • PDF

A Study on Properties of semiconducting paste on metal insert molded in Epoxy compound (에폭시 절연물 매입금구 반도전 접착제 코팅에 따른 특성 연구)

  • Kim, Su-Youn;Ha, Young-Gil;Lee, Sang-Jin;Kim, Young-Seong;Park, Wan-Ki;Kim, Seong-Jin
    • Proceedings of the KIEE Conference
    • /
    • 1999.07d
    • /
    • pp.1645-1647
    • /
    • 1999
  • Epoxy compound has been used as insulation material in electrical equipment because of its properties 1) Nowadays, becoming higher voltage system, the properties of interface between epoxy and its metal insert become more important. In this paper, we suggest two types semiconducting paste. One is epoxy type and the other is olephine type. After sprayed the semiconducting paste on metal insert sanded, we procedure the test one is the adhesion strength test, the other is electrical breakdown strength test. So we knew that the epoxy type paste became more higher adhesion strength than olephine type paste because of its homogeneity at the interfaces. And at the breakdown strength test, olephine type paste became less higher than epoxy type paste because of its volatility. So in this study, we suggest the optimum interface condition by adjusting the semiconducting paste and surface roughness.

  • PDF

Silicon/Pad Pressure Measurements During Chemical Mechanical Polishing

  • Danyluk, Steven;Ng, Gary;Yoon, In-Ho;Higgs, Fred;Zhou, Chun-Hong
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.433-434
    • /
    • 2002
  • Chemical mechanical polishing refers to a process by which silicon and partially-processed integrated circuits (IC's) built on silicon substrates are polished to produce planar surfaces for the continued manufacturing of IC's. Chemical mechanical polishing is done by pressing the silicon wafer, face down, onto a rotating platen that is covered by a rough polyurethane pad. During rotation, the pad is flooded with a slurry that contains nanoscale particles. The pad deforms and the roughness of the surface entrains the slurry into the interface. The asperities contact the wafer and the surface is polished in a three-body abrasion process. The contact of the wafer with the 'soft' pad produces a unique elastohydrodynamic situation in which a suction force is imposed at the interface. This added force is non-uniform and can be on the order of the applied pressure on the wafer. We have measured the magnitude and spatial distribution of this suction force. This force will be described within the context of a model of the sliding of hard surfaces on soft substrates.

  • PDF