• 제목/요약/키워드: interaction element

검색결과 1,558건 처리시간 0.025초

Effect of element interaction and material nonlinearity on the ultimate capacity of stainless steel cross-sections

  • Theofanous, M.;Gardner, L.
    • Steel and Composite Structures
    • /
    • 제12권1호
    • /
    • pp.73-92
    • /
    • 2012
  • The effect of element interaction and material nonlinearity on the ultimate capacity of stainless steel plated cross-sections is investigated in this paper. The focus of the research lies in cross-sections failing by local buckling; member instabilities, distortional buckling and interactions thereof with local buckling are not considered. The cross-sections investigated include rectangular hollow sections (RHS), I sections and parallel flange channels (PFC). Based on previous finite element investigations of structural stainless steel stub columns, parametric studies were conducted and the ultimate capacity of the aforementioned cross-sections with a range of element slendernesses and aspect ratios has been obtained. Various design methods, including the effective width approach, the direct strength method (DSM), the continuous strength method (CSM) and a design method based on regression analysis, which accounts for element interaction, were assessed on the basis of the numerical results, and the relative merits and weaknesses of each design approach have been highlighted. Element interaction has been shown to be significant for slender cross-sections, whilst the behaviour of stocky cross-sections is more strongly influenced by the material strain-hardening characteristics. A modification to the continuous strength method has been proposed to allow for the effect of element interaction, which leads to more reliable ultimate capacity predictions. Comparisons with available test data have also been made to demonstrate the enhanced accuracy of the proposed method and its suitability for the treatment of local buckling in stainless steel cross-sections.

형상기억합금 상호작용 에너지의 유한요소 계산 (Finite element calculation of the interaction energy of shape memory alloy)

  • 양승용
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 추계학술대회
    • /
    • pp.79-84
    • /
    • 2004
  • Strain energy due to the mechanical interaction between self-accommodation groups of martensitic phase transformation is called interaction energy. Evaluation of the interaction energy should be accurate since the energy appears in constitutive models for predicting the mechanical behavior of shape memory alloy. In this paper, the interaction energy is evaluated in terms of theoretical formulation and explicit finite element calculation. A simple example with two habit plane variants was considered. It was shown that the theoretical formulation assuming elastic interaction between the self-accommodation group and matrix gives larger interaction energy than explicit finite element calculation in which transformation softening is accounted for.

  • PDF

단자유도 매크로요소를 이용한 깊은기초의 상호작용 모델 (S.D.O.F Macro-element for Interaction of Deep Foundation)

  • 나창순
    • 한국전산구조공학회논문집
    • /
    • 제21권4호
    • /
    • pp.347-355
    • /
    • 2008
  • 본 연구에서는 수평하중을 받는 깊은 기초에서 나타나는 지반과 기초의 상호작용을 분석할 목적으로 전통적인 소성이론을 응용하여 개발한 단자유도의 매크로요소 모델을 제시하였다. 제시한 매크로요소 모델은 지반에 매립된 깊은 기초가 수평하중을 받을 때 지반과 기초사이에 발생하는 응력의 제 성분을 각각 모델링하고 합성함으로써 구성하였는데, 이는 기초와 지반의 상호작용을 단순 스프링으로 모델링하는 기존의 방법에 비해 상호작용에 관련한 응력을 성분별로 분리하여 제공하는 장점이 있다. 본 연구에서는 상호작용과 관련한 응력의 제 요소를 마찰력과 측압저항으로 크게 분류하고 각 요소를 소성이론을 이용하여 모델링하였으며, 최종적으로 이들을 병렬로 조합하는 방식으로 매크로요소를 구성하였다. 제시한 매크로요소를 이용하여 점성토에 매립한 깊은 기초가 수평하중을 받는 경우를 해석한 결과 기초의 전체적인 거동과 더불어 상호작용 매크로요소를 구성하는 각 요소들로부터 상호작용 음력의 제 요소들을 분석해 냄으로써 기존 모델에 비해 개선된 결과를 얻을 수 있었다.

판과 탄성지반의 상호작용을 고려한 3차원 유한요소해석에 관한 연구 (A Study of 3-Dimension Plate- Elastic Foundation Interaction Analysis by Finite Element Method)

  • 황창규;강재순
    • 한국지반공학회지:지반
    • /
    • 제8권1호
    • /
    • pp.7-18
    • /
    • 1992
  • 실험으로 측정란 변위와 3차원 경계면 요소를 도입하여 판 구조물과 지반의 상호 작용문제를 해석한 수직변위를 비교한 결과 다음과 같은 결론을 얻었다. 1. 경계면 요소를 도입하므로써 판 구조물과 지반 모두를 유한요소로 분할하여 상호작용문제를 해석할 수 있다. 2. 경계면 요소를 도입하므로써 판 구조물과 지반 상호작용문제의 해석에서 지반반력 계수를 필요로 하지 않는다. 3.경계면 요소를 도입하므로써 판 구조물과 지반 상호작용문제의 해석에서 지중의 변위를 구하기 위한 후처리 과정이 필요 없다.

  • PDF

유체-구조물 상호작용을 위한 유한요소 결합공식화의 예조건화에 대한 연구 (Preconditioning Method of a Finite Element Combined Formulation for Fluid-Structure Interaction)

  • 최형권
    • 대한기계학회논문집B
    • /
    • 제33권4호
    • /
    • pp.242-247
    • /
    • 2009
  • AILU type preconditioners for a two-dimensional combined P2P1 finite element formulation of the interaction of rigid cylinder with incompressible fluid flow have been devised and tested by solving fluid-structure interaction (FSI) problems. The FSI code simulating the interaction of a rigid cylinder with an unsteady flow is based on P2P1 mixed finite element formulation coupled with combined formulation. Four different preconditioners were devised for the two-dimensional combined P2P1 finite element formulation extending the idea of Nam et al., which was proposed for the preconditioning of a P2P1 mixed finite element formulation of the incompressible Navier-Stokes equations. It was found that PC-III or PC-IV among them perform well with respect to computational memory and convergence rate for some bench-mark problems.

접합요소를 도입한 기초지반의 유한요소해석 (The Finite Element Analysis of Foundation Layer by Introducing Interface Element)

  • 양극영;이대재
    • 한국전산구조공학회논문집
    • /
    • 제15권1호
    • /
    • pp.9-20
    • /
    • 2002
  • 본 연구의 목적은 비선형 흙-구조물 상호 작용문제를 연구하기 위한 계산 절차를 개발하는 것이다. 흙-구조물 상호 작용 거동을 연구하기 위하여 연직과 수평하중을 동시에 받은 대상기초와 강널말뚝으로 보강된 기초지반에 대한 유한 요소 수치해석을 하였으며 흙과 기초구조물 사이의 상호작용 거동을 모델하기 위하여 접합요소를 사용하였다 주 해석 결과는 다음과 같다. 1. 침하와 측방변위의 예측에 대해서는, 접합요소를 사용한 결과가 더 큰 값을 얻었다. 2. 극한지지력 결정에 대해서는 접합요소를 사용한 경우가 약 12%정도 더 작게 나타났다 3. 대상기초의 수평과 연직변위는 접합요소의 영향을 받았다.

The application of BEM in the Membrane structures interaction with simplified wind

  • Xu, Wen;Ye, Jihong;Shan, Jian
    • Structural Engineering and Mechanics
    • /
    • 제31권3호
    • /
    • pp.349-365
    • /
    • 2009
  • Membrane structures are quite sensitive to wind and therefore the fluid-solid interaction can not be neglected in dynamic analysis. A boundary element method (BEM) for 3D simulation of wind-structure interaction in tensile membrane structures is presented in this paper. The flow is treated as incompressible and potential. The flow field is solved with boundary element method codes and structural simulation is performed by finite element method software ANSYS. The nonlinear equations system is solved iteratively, with segregated treatment of the fluid and structure equations. Furthermore this method has been demonstrated to be effective by typical examples. Besides, the influence of several parameters on the wind-structure interaction, such as rise-span ratio, prestress and the wind velocity are investigated according to this method. The results provide experience in wind resistant researches and engineering.

Dynamic Condensation Method를 이용한 차량-교량계의 동적해석 (Dynamic Analysis of Vehicle-Bridge System by the Dynamic Condensation Method)

  • 한재익;이경동
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제2권2호
    • /
    • pp.177-184
    • /
    • 1998
  • The equation of motion on the vehicle-bridge system is established as the simultaneous equations which are combined the equation of vehicle and bridge by the interaction elements. A vehicle element is modeled as lumped masses supported by springs and dashpots, and a bridge element with pavement roughness is modeled as beam elements. An interaction element is defined to consist of a bridge element and the suspension units of the vehicle resting on the element. By the dynamic condensation method, the degrees of the freedom are eliminated, and compared with all the degrees of freedom on the bridge, the efforts of calculation is decreased. Thus, although a very small computational error is occured, the present technique appears to be computationally more efficient. It is particularly suitable for the simulation of bridges with a series of vehicles moving on the deck.

  • PDF

Interaction of High-Speed Compressible Viscous Flow and Structure by Adaptive Finite Element Method

  • Limtrakarn, Wiroj;Dechaumphai, Pramote
    • Journal of Mechanical Science and Technology
    • /
    • 제18권10호
    • /
    • pp.1837-1848
    • /
    • 2004
  • Interaction behaviors of high-speed compressible viscous flow and thermal-structural response of structure are presented. The compressible viscous laminar flow behavior based on the Navier-Stokes equations is predicted by using an adaptive cell-centered finite-element method. The energy equation and the quasi-static structural equations for aerodynamically heated structures are solved by applying the Galerkin finite-element method. The finite-element formulation and computational procedure are described. The performance of the combined method is evaluated by solving Mach 4 flow past a flat plate and comparing with the solution from the finite different method. To demonstrate their interaction, the high-speed flow, structural heat transfer, and deformation phenomena are studied by applying the present method to Mach 10 flow past a flat plate.

접합면 스프링요소를 고려한 단말뚝-지반 상호작용계의 수직진동해석 (Vertical Vibration Analysis of Single Pile-Soil Interaction System Considering the Interface Spring)

  • 김민규;김문겸;이종세
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2002년도 추계 학술발표회 논문집
    • /
    • pp.106-113
    • /
    • 2002
  • In this study, a numerical analysis method for soil-pile interaction in frequency domain problem is presented. The total soil-pile interaction system is divided into two parts so called near field and far field. In the near field, beam elements are used for a pile and plain strain finite elements for soil. In the far field, dynamic fundamental solution for multi-layered half planes based on boundary element formulation is adopted for soil. These two fields are coupled using FE-BE coupling technique In order to verify the proposed soil-pile interaction analysis, the dynamic responses of pile on multi-layered half planes are simulated and the results are compared with the experimental results. Also, the dynamic response analyses of interface spring elements are performed. As a result, less spring stiffness makes the natural frequency decrease and the resonant amplitude increase.

  • PDF