• Title/Summary/Keyword: intensity estimation

Search Result 619, Processing Time 0.027 seconds

Estimation of Maximum Typhoon Intensity Considering Climate Change Scenarios and Simulation of Corresponding Storm Surge (기후변화 시나리오에 따른 최대 가능 태풍강도 추정 및 이에 따른 폭풍해일고 양상 모의)

  • Yoon, Jong-Joo;Jun, Ki-Cheon;Shim, Jae-Seol;Park, Kwang-Soon
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.15 no.4
    • /
    • pp.292-301
    • /
    • 2012
  • The rise in sea surface temperature (SST) as a global warming enhance overall typhoon activity. We assumed that there exist thermodynamic limits to intensity that apply in the absence of significant interaction between storms and their environment. The limit calculations depend on SST and atmospheric profiles of temperature and moisture. This approach do appear to provide resonable upper bounds on the intensities of observed storms and may even be useful for predicting the change in intensity over a long period time. The maximum storm intensities was estimated through the global warming scenarios from IPCC-AR4 report over the North-East Asia. The result shows stronger intensities according to scenarios for increase of carbon dioxide levels. And storm surge simulations was performed with the typhoons which were combined route of the typhoon Maemi (2003) and intensity as climate change scenarios. The maximum increase of storm surge heights was shown about 29~110 cm (36~65%) regionally. Especially at Masan, the result of simulated maximum surge height exceed the 200 years return period surge.

Voice Activity Detection using Motion and Variation of Intensity in The Mouth Region (입술 영역의 움직임과 밝기 변화를 이용한 음성구간 검출 알고리즘 개발)

  • Kim, Gi-Bak;Ryu, Je-Woong;Cho, Nam-Ik
    • Journal of Broadcast Engineering
    • /
    • v.17 no.3
    • /
    • pp.519-528
    • /
    • 2012
  • Voice activity detection (VAD) is generally conducted by extracting features from the acoustic signal and a decision rule. The performance of such VAD algorithms driven by the input acoustic signal highly depends on the acoustic noise. When video signals are available as well, the performance of VAD can be enhanced by using the visual information which is not affected by the acoustic noise. Previous visual VAD algorithms usually use single visual feature to detect the lip activity, such as active appearance models, optical flow or intensity variation. Based on the analysis of the weakness of each feature, we propose to combine intensity change measure and the optical flow in the mouth region, which can compensate for each other's weakness. In order to minimize the computational complexity, we develop simple measures that avoid statistical estimation or modeling. Specifically, the optical flow is the averaged motion vector of some grid regions and the intensity variation is detected by simple thresholding. To extract the mouth region, we propose a simple algorithm which first detects two eyes and uses the profile of intensity to detect the center of mouth. Experiments show that the proposed combination of two simple measures show higher detection rates for the given false positive rate than the methods that use a single feature.

Accuracy of Accelerometer for the Prediction of Energy Expenditure and Activity Intensity in Athletic Elementary School Children During Selected Activities (초등학교 운동선수를 대상으로 대표 신체활동의 에너지 소비량 및 활동 강도 추정을 위한 가속도계의 정확도 검증)

  • Choi, Su-Ji;An, Hae-Sun;Lee, Mo-Ran;Lee, Jung-Sook;Kim, Eun-Kyung
    • Korean Journal of Community Nutrition
    • /
    • v.22 no.5
    • /
    • pp.413-425
    • /
    • 2017
  • Objectives: Accurate assessment of energy expenditure is important for estimation of energy requirements in athletic children. The objective of this study was to evaluate the accuracy of accelerometer for prediction of selected activities' energy expenditure and intensity in athletic elementary school children. Methods: The present study involved 31 soccer players (16 males and 15 females) from an elementary school (9-12 years). During the measurements, children performed eight selected activities while simultaneously wearing the accelerometer and carrying the portable indirect calorimeter. Five equations (Freedson/Trost, Treuth, Pate, Puyau, Mattocks) were assessed for the prediction of energy expenditure from accelerometer counts, while Evenson equation was added for prediction of activity intensity, making six equations in total. The accuracy of accelerometer for energy prediction was assessed by comparing measured and predicted values, using the paired t-test. The intensity classification accuracy was evaluated with kappa statistics and ROC-Curve. Results: For activities of lying down, television viewing and reading, Freedson/Trost, Treuth were accurate in predicting energy expenditure. Regarding Pate, it was accurate for vacuuming and slow treadmill walking energy prediction. Mattocks was accurate in treadmill running activities. Concerning activity intensity classification accuracy, Pate (kappa=0.72) had the best performance across the four intensities (sedentary, light, moderate, vigorous). In case of the sedentary activities, all equations had a good prediction accuracy, while with light activities and Vigorous activities, Pate had an excellent accuracy (ROC-AUC=0.91, 0.94). For Moderate activities, all equations showed a poor performance. Conclusions: In conclusion, none of the assessed equations was accurate in predicting energy expenditure across all assessed activities in athletic children. For activity intensity classification, Pate had the best prediction accuracy.

Characterization Of Rainrate Fields Using A Multi-Dimensional Precipitation Model

  • Yoo, Chul-sang;Kwon, Snag-woo
    • Water Engineering Research
    • /
    • v.1 no.2
    • /
    • pp.147-158
    • /
    • 2000
  • In this study, we characterized the seasonal variation of rainrate fields in the Han river basin using the WGR multi-dimensional precipitation model (Waymire, Gupta, and Rodriguez-Iturbe, 1984) by estimating and comparing the parameters derived for each month and for the plain area, the mountain area and overall basin, respectively. The first-and second-order statistics derived from observed point gauge data were used to estimate the model parameters based on the Davidon-Fletcher-Powell algorithm of optimization. As a result of the study, we can find that the higher rainfall amount during summer is mainly due to the arrival rate of rain bands, mean number of cells per cluster potential center, and raincell intensity. However, other parameters controlling the mean number of rain cells per cluster, the cellular birth rate, and the mean cell age are found invariant to the rainfall amounts. In the application to the downstream plain area and upstream mountain area of the Han river basin, we found that the number of storms in the mountain area was estimated a little higher than that in the plain area, but the cell intensity in the mountain area a little lower than that in the plain area. Thus, in the mountain area more frequent but less intense storms can be expected due to the orographic effect, but the total amount of rainfall in a given period seems to remain the same.

  • PDF

Estimation of mechanical damage by minority carrier recombination lifetime and near surface micro defect in silicon wafer (실리콘 웨이퍼에서 소수 반송자 재결합 수명과 표면 부위 미세 결함에 의한 기계적 손상 평가)

  • 최치영;조상희
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.9 no.2
    • /
    • pp.157-161
    • /
    • 1999
  • We investigated the effect of mechanical back side damage in Czochralski silicon wafer. The intensity of mechanical damage was evaluated by minority carrier recombination lifetime by laser excitation/microwave reflection photoconductance decay ($\mu$-PCD) technique, wet oxidation/preferential etching methods, near surface micro defect (NSMD) analysis, and X-ray section topography. The data indicate that the higher the mechanical damage intensity, the lower the minority carrier lifetime, and NSMD density increased proportionally, also correlated to the oxidation induced stacking fault (OISF) density. Thus, NSMD technique can be used separately from conventional etching method in OISF measurement.

  • PDF

Fatigue Life Estimation of Cruciform Welded Joint Considering Multiple Collinear Surface Cracks (십자형 필렛용접 이음부의 복수균열 진전수명 평가)

  • Han Seung Ho;Shin Byung Chun;Kim Jae Hoon;Han Jeong Woo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.10
    • /
    • pp.1549-1557
    • /
    • 2004
  • Fatigue life of welded joints is governed by the propagation of multiple collinear surface cracks distributed randomly along weld toe. These cracks propagate under the mechanisms of mutual interaction and coalescence of the adjacent two cracks. To estimate the fatigue life, its influences on the above two mechanisms should be taken into account, which appear through the stress intensity factors disturbed mutually. However, it is difficult to calculate the stress intensity factors of the multiple surface cracks located in vicinity of weld toe due to its geometrical complexity. They are calculated normally by using the Μk-factors, but such Mk-factors are very rare in literature. In this study, the Μ$textsc{k}$-factors were obtained from a parametric study on crack length and depth, for which a finite element method is used. A fatigue test for a cruciform welded Joint was conducted and the fatigue life of the tested specimen was estimated using the present method with the informations obtained from the test, such as the number, size, and locations of the cracks. The estimated and measured fatigue life showed a good agreement.

New Normalization Methods using Support Vector Machine Regression Approach in cDNA Microarray Analysis

  • Sohn, In-Suk;Kim, Su-Jong;Hwang, Chang-Ha;Lee, Jae-Won
    • Proceedings of the Korean Society for Bioinformatics Conference
    • /
    • 2005.09a
    • /
    • pp.51-56
    • /
    • 2005
  • There are many sources of systematic variations in cDNA microarray experiments which affect the measured gene expression levels like differences in labeling efficiency between the two fluorescent dyes. Print-tip lowess normalization is used in situations where dye biases can depend on spot overall intensity and/or spatial location within the array. However, print-tip lowess normalization performs poorly in situation where error variability for each gene is heterogeneous over intensity ranges. We proposed the new print-tip normalization methods based on support vector machine regression(SVMR) and support vector machine quantile regression(SVMQR). SVMQR was derived by employing the basic principle of support vector machine (SVM) for the estimation of the linear and nonlinear quantile regressions. We applied our proposed methods to previous cDNA micro array data of apolipoprotein-AI-knockout (apoAI-KO) mice, diet-induced obese mice, and genistein-fed obese mice. From our statistical analysis, we found that the proposed methods perform better than the existing print-tip lowess normalization method.

  • PDF

A Study on the Ground Improvement Effective Evaluation of Reclaimed Land Using Cone Penetration Test (CPT를 이용한 준설매립지반의 개량효과 평가에 관한 연구)

  • Kim, Jong-Kook;Chae, Young-Su;Kim, Myoung-Mo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2004.03b
    • /
    • pp.910-921
    • /
    • 2004
  • In this study, the pilot tests on the reclaimed land were performed in order to find the suitable construction method with dynamic compaction Type I, Type II at different dynamic energy and hydraulic hammer compaction. The estimation of the compaction through the various pilot tests was performed by the CPT-qc, SPT-N and field density tests. As the result of the pilot tests, it shows that the dynamic compaction method is better than the hydraulic hammer compaction method in the effect of the ground improvement, especially dynamic compaction Type I is much superior to others. When it comes to method for measuring the intensity of the ground, the value of the cone penetration test-resistance(qc) is much suitable for the ground. Besides, the standards for the compaction control, which showed that over 10Mpa at 0 through 5meters in the upper layer and 7Mpa at 5 through 8meters in the lower layer in the CPT-qc, could be found without discrimination of the upper road and lower road on the reclaimed land. And it also found that the intensity of the reclaimed land gets back to the original status in about 10 through 15 days.

  • PDF

Resource-Based Relative Value for Estimation of Nursing Behavior in Neonatal Intensive Care Units (신생아집중치료실 간호수가 산정을 위한 간호행위별 상대가치 산정)

  • Moon, Sun-Young
    • Child Health Nursing Research
    • /
    • v.12 no.1
    • /
    • pp.15-24
    • /
    • 2006
  • Purpose: This study was done to define nursing behavior in neonatal intensive care units so as to estimate resource-based relative value-. Method: Participating in this study were 292 nurses in neonatal intensive care units. The study surveyed physical and mental labor, stress and time involved in nursing work. Tool used in this study was a nursing labor per relative value tool. For analyzes, the relative value of each nursing behavior was calculated, where the mean value of the three components, labor intensity and component-by-component explanatory power were in percentage terms. Results: 1. Nursing behaviors in neonatal intensive care unit were classified and defined at three levels: 5 main domains, 17 mid-domains, and 42 small domains. 2. The per component explanatory power of intensity involved in nursing labor showed physical effort to be 32.45%, mental 32.86%, and stress 34.69%. 3. The reliability of nursing labor factors was very strong, Cronbach's alpha value of 0.96. Conclusion: In this research, which is a first in defining nursing behavior in neonatal intensive care units, individual nursing behavior were broken down using resource-based relative value for nursing cost, and each nursing behavior was successfully translated to a numerical value.

  • PDF

Detecting Complex 3D Human Motions with Body Model Low-Rank Representation for Real-Time Smart Activity Monitoring System

  • Jalal, Ahmad;Kamal, Shaharyar;Kim, Dong-Seong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.3
    • /
    • pp.1189-1204
    • /
    • 2018
  • Detecting and capturing 3D human structures from the intensity-based image sequences is an inherently arguable problem, which attracted attention of several researchers especially in real-time activity recognition (Real-AR). These Real-AR systems have been significantly enhanced by using depth intensity sensors that gives maximum information, in spite of the fact that conventional Real-AR systems are using RGB video sensors. This study proposed a depth-based routine-logging Real-AR system to identify the daily human activity routines and to make these surroundings an intelligent living space. Our real-time routine-logging Real-AR system is categorized into two categories. The data collection with the use of a depth camera, feature extraction based on joint information and training/recognition of each activity. In-addition, the recognition mechanism locates, and pinpoints the learned activities and induces routine-logs. The evaluation applied on the depth datasets (self-annotated and MSRAction3D datasets) demonstrated that proposed system can achieve better recognition rates and robust as compare to state-of-the-art methods. Our Real-AR should be feasibly accessible and permanently used in behavior monitoring applications, humanoid-robot systems and e-medical therapy systems.