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Abstract: In this study, we characterized the seasonal variation of rainrate fields in the Han river basin using the
WGR  multi-dimensional precipitation model (Waymire, Gupta, and Rodriguez-Tturbe, 1984) by estimating and
comparing the parameters derived for each month and for the plain area, the mountain area and overall basin,
respectively. The first- and second-order statistics derived from observed point gauge data were used to estimate the
model parameters based on the Davidon-Fletcher-Powell algorithm of optimization. As a result of the study, we can
find that the higher rainfall amount during summer is mainly due to the arrival rate of rain bands, mean number of
cells per cluster potential center, and raincell intensity. However, other parameters controlling the mean number of
rain cells per cluster, the cellular birth rate, and the mean ccll age are found invariant to the rainfall amounts. In
the application to the downstream plain area and upstream mountain area of the Han river basin, we found that the
number of storms in the mountain area was estimated a little higher than that in the plain area, but the cell intensity
in the mountain area a little lower than that in the plain area. Thus, in the mountain area more frequent but less
intense storms can be expected due to the orographic effect, but the total amount of rainfall in a given period seems
to remain the same.
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extracted from the data
collected by raingauges randomly located over

. should also be
1. Introduction

Rainfall is observed using point gauges,
radar,
radar or satellite is becoming plausible, the

or satellite. Even though the use of

raingauge network over a basin is still the
important data provider, especially
considering the length of its record. Recent
satellite to the
observation of rainfall field, generally three
and space,
requires priori information of rainrate fields,
with which accurate and economical design of

most
application of radar or

dimensional  considering  time

sampling is possible. This priori information

a basin.

Raingauges measure rainfall continuously,
but the data available is the time-averaged.
Also, the rainfall observed both in time and
space is not generally from a single event but
the complex one, a combination of several
Thus, it is difficult to
both statistical
physical from the point gauge records. Even
using the spatially distributed data, it is

difficult to extract a single storm characteristics

single storm events.

delineate characteristics and

including storm arrival rate, number of rain
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cells per storm, its intensity, size of clusters,
storm duartion, etc.

An indirect way to extract the storm
characteristics is to use a multi-dimensional
model of precipitation, which counts all

observed characteristics of physical and
statistical point of view. This kind of multi-
helpful  to

characterize the rainrate field, and also to

dimensional model can be
make applications easy for various purposes
such as sampling design, ground validation of
remotely sensed data, or realistic rainrate ficld
generation. So far, many multi-dimensional
precipitation models have been developed for
purposes,  like

simulation, sampling strategy, and calibration

various realistic  rainfall
of sensors. Examples are the WGR model
(Waymire et al, 1984), the noise forced
diffusive model (North and Nakamoto, 1989),
and recently a model by Yoo et al. (1996).
Each model

disadvantages

has its own advantages and

in practical use. A complex
model, like the WGR model, can represent the
rainfall field more accurately provided the
proper estimates of parameters are used. But
as shown by Islam et al. (1988) and Valdes
et al. (1990), its parameter estimation has been
a difficult task.

A relatively simple model, like the noise
forced diffusive

advantages of easy parameter estimation and

precipitation model, has
application to the other purposes (mainly due
to the simple model structure with a small set
of parameters), but it lacks proper description
of physical and statistical features of observed
rainfall fields (Valdes et al., 1994). The model
by Yoo et al. (1996) may be said to be in
between the above two. It has
simple form with only four parameters. Its

relatively

parameter estimation is also simple, but it

lacks the description of long term storm
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arrival system and clustering.

In this study, we are .to characterize the
seasonal variation of rainrate fields of plain
area and mountain area in a given basin using
the WGR precipitation model. Even though the
structure of the WGR model is very complex
and non-linear, we believe this model is the
best one we can choose for the study purpose.
Basically, the characterization of rainrate fields
using the WGR model is nothing but the
parameter estimation of the model using the
first- and second-order statistics derived from
observed point gauge data. By comparing the
parameters derived for each case, such as
rainrate  field of summer in plain area or
spring in mountain area, etc., we will derive
general features of rainrate field both in time
and space.

2. The WGR Precipitation Model

The WGR model (Waymire et al., 1984)
was developed to represent meso-scale (about
20-200km) precipitation. As a
model, this model shows a good link between

conceptual

atmospheric  dynamics and a  statistical
description of meso-scale precipitation. As a
space-time representation of the rainfall, this
model is characterized by the arrival
mechanism of storm events through time. The
model represents rainfall in a hierarchical
approach with rain cells embedded in cluster
potential centers which are, in turn, embedded
The

introduced for the rainbands arrival scheme

in  rainbands. Poisson process was
and the spatial Poisson process to distribute
the cluster potentials within a rainband. The
occurrences of rain cells within the cluster
and the

assumed to be a random number of points

potentials rainband following are

independently and identically distributed in the
space-time cylinder with common probability
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density function. The representation of the
ground-level rainfall intensity (at location x
and time t) of the model can be written as
follows

¢
&0 = [ [ elt=s lx—y=o(t=9l] X(s.9)dsay

=fiwgl(t—s)Z[s,x—v(t—s)]ds
)
a uniform and drift

where v s steady

velocity vector and Z(¢ x) is given by

Z(t,0) = [ &= X(t,y)dy @

where the cluster field
X(ty), a the
instantaneous generation of rain cells in time

g,(7) distributes

two-stage  point

random field, governs

and space, and the kemnel

the rainfall intensity in space around each cell.
The a(t) the

evolution of the life cycle of a rain cell

kernel represents temporal

Table 1 shows typical parameters and their
descriptions. More description of the model
can be found in Waymire et al. (1984) and
Gupta and Waymire (1987).
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For the point rainfall intensity process
&(x, ), Waymire et al. (1984) derived the

expected value E[&(x,#)], the variance
Var[ &(x, £)], and the covariance
Covl&(x, t), &(x",f)] between two points,

x=(x,, x,) and x =(x'y, x’y). The areal
average of the random variable &(x,t) over a
square area [ x [ is defined as

5(t) =#f0LfUL5(x, t) dx, diy 3)

Since the precipitation process was assumed to
be weakly ergodic by Waymire et al. (1984),
the expected value of Z(¢)
time

is obtained by
the
expected value for 5(z) can be computed by

performing averages. Namely,

: 175
E[&(L, )] = Lim — [ &(Dat @
Since the expected wvalue operator E[]

commutes with the spatial integral operator in
(3), the expected value of the area-averaged
rain intensity is not affected by the area-
averaging process, i.e., the mean value for the
point process is equal to the mean value for

Table 1. A Summary of Typical Parameters of the WGR Model and the Estimates of the
Parameters tuned to GATE from Waymire et al. (1984)

Parameter Description Order of Magnitude Estimates(GATE)
A rain band arrival rate bands/hour 0.0128
oL mean density of cluster potential clusters/ km? 0.0038

<y > mean number of cells per cluster 3.82
B cellular birth rate cells/hour 0.355
o cell location parameter within a 10.0

cluster potential region km

a ! mean cell age hour 0.58
D spatial range of cell intensity km 3.0
7, raincell intensity at cell mm/hour 55.06

center at the time of birth

[U,} rainband speed relative to the ground km/hour 10.0

|U.) cell speed relative to the band km/hour 0.0
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the area-averaged rain rate.
E[Z()] =E[&(x, )] = & (%)

The variance and covariance of Z(¢) defined

as
Var[£(#)] = E[(E(t)-E[&(£)D*] ©

Covl[E(2), E()] =

M
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does not commute with the products of the
integral operator in the right-hand sides of the
above two equations. In practice, smoothing is
widely used to filter sequences in order to
diminish the effect of measurement errors and
other high-frequency disturbances. We expect
that the area-averaging process will reduce the
variance of the random variables. Resulting
mean and variance of the WGR model is as

E[(£(¢)— E[E(O(E(¢)— ELF(£)])] follows.
must be affected by the area averaging, since E[£(¢)] = 2L ]PL/{mC; Eliy]27D" )
the expected value operator E[] apparently
= (%
Var[£(0] = Fr (6P (D0 + (8- a)b+ ~ 7 )PH(D, )] ©
where,
2 5
P(D, ) = 4(D2+02)[exp(—(4Tf2’+6—2))—1] + 2LV D?+ 6% \/—nerf(m)
AnE[V] oL xD*E[4}]
o = 2a
g, — 24, BEV]* 0572’ D'E[ i8]
2 — a(BZ _0,2)
b — 2AmBEly (v—1D] o, x*D*E[i§]
3 = a(BZ . IZZ)
and the covariance function of the WGR model is
Cov[E(D), 2(£)] = #[me‘"“‘m+<£e‘”"'—a'ﬂ‘f'><9z+7lmf+m>lsl41 (10)

where

I = 2D*[E(L, — u,,D,0) —2E0, u;, D,0))+ E(L, u,, D, 0)]
+DVr[(L—wur)R(L, — w1, D,0) —2R(0, %1, D, 0) + (L+ 2, 0)R(L, u;, D, 0)]

I, = 2D*[E(L, — uy, D,0)—2E(0, u, D,0)) + E(L, uy, D, 0)]
+DVa[(L—u,v)R(L, us, D, 0) — 2R(0, 5, D, 0) + (L — ws0)R(L, u,, D, 0)]

I = AD*+ 6 )N E(L, w1, D, 0)—2E(0, u;, D, o)) + E(L, u, D, 0)]
+[(D+ o)l YV [ (L— 2, 1)R(L, — u,, D, 0) —2R(0, uy, D, &) + (L + s, 0)R(L, u;, D, 0)]

I, = AD*+ o®)[E(L, —u,, D, 6)—2E(0, u,, D, 0)) + E(L, u;, D, 6)]
+DVr (L~ wyr)R(L, —u;, D, 0)~2R(0, u;, D, 0) + (L+ u,0)R(L, u,, D, )]



Water Engineering Research, Vol. 1, No. 2, 2000

and
_ (L=’
E(L,u;,D, 0) = exp( WD+ oD )
L+uwu;r

R(L,u;, D,0) = erf[w]

The
wavenumber spectrum of the WGR model was
derived by Valdes et al. (1990);

analytical form of the frequency-

S v, Vy) — GIM

o+ 6°
2a8(8—a?
O T an g A D)
aB(8*—o? E(D, o)

T T+ 02 (81 60 47XD’+ )

Q)

where §() is a dirac delta function and:

E(D,0) = 8x(D?+ 0%expl — 47D+ oD(v2i+ Vi)]
@ = 2zn(vou, + vyu, + f)

This spectrum depends on all nine parameters
of the reduced version of the model and has
the dependencies of order -2 and -4 on both
frequency and wavenumber. This dependencies
are the consequence of the exponential
descriptions of rainfall intensity decay in time
and the
rainfall intensity in space.

Islam et al. (1988), Valdes et al. (1990) and
and Valdes (1991) estimated the

parameters for different fields using non-linear

Gaussian kernel to distribute the

Koepsell

optimization techniques by minimizing the sum
of the square errors. Because of the large
number and the
non-linearities, the estimation itself has been a
difficult task.

of the parameters large

3. Model Non-linearities and Parameter
Estimation

The extreme difficulties associated with the
estimation of parameters is recognized to be a
major impediment to wider use and full
utilization of space-time models. Most of the
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parameters of a space-time rainfall model are

not physically measurable. Practical interest
often centered in estimating parameters is to
use information from rain gage observations.

The WGR model has nine parameters: A,,,
8, a, El[4{), Elv], e, D, ¢ and U.
The parameters may be evaluated using the
method of moments. Numerical estimates of
various combinations of first- and second-order
statistics from historical precipitation traces can
be equated to their theoretical expressions,
resulting in a set of nine highly nonlinear
unknowns.  Although

theoretically possible, it appears unrealistic to

equations with nine
attempt to solve nine simultaneous equations
even when it is possible to determine some of
the parameters from the understanding of the
physics of the
procedure presented in this paper utilizes a

problem. The estimation
combination of physically determined parameters
and parameters estimated from data. Three
parameters were determined from physical
consideration and kept fixed while other six
were estimated using the method of moments.

This results in a set of six equations with
six unknown parameters. A minimum least
square technique has been employed to obtain
estimates of the model parameters. Let F(X)
be the set of nonlinear equations in parameter

X that must satisfy the observation vector §:

F(X)~-0=0 (12)

where F(X) is the best estimate of ¢. The
different
magnitudes and hence their sum of the squares

elements in @ have order of
tend to be biased toward higher values. To
this every F(X) is
normalized by the corresponding ¢ value.
Now, the solution of (12) may be derived
through a

minimization:

circumvent problem,

simple unconstrained nonlinear
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min X{( flzo —1)2+(f2(X) —1)2+...+‘(%_1)2+...]

0,

Several algorithms exist to solve this simple
unconstrained nonlinear optimization problem.
The
used for the numerical search of X from

Davidon-Fletcher-Powell algorithm was
(13). Poor initial guess vector to any iterative
schemes lead to an obvious divergence. To be
as close as possible to X at the beginning,
an initial search is performed in R” to find
points in the neighborhood of the least square
estimate from (13). Though the values for
parameter X are not known to any reasonable
accuracy, their upper and lower limits are
known from the physics of the problem. A
window mesh algorithm developed in the work
of Entekhabi et al. (1989). uses the fact to

Water Engineering Research, Vol 1, No. 2, 2000

(13)

zoom into the neighborhood of the minimum.
Davidon-Fletcher-Powell method coupled with
mesh algorithm has been used in this paper to
solve the parameter estimation problem.

4. Application Example

4.1 Data and Summary Statistics

Han river basin is in the middle of Korean
peninsula at latitude 36° 30° ~38° 557
North and longitude 126° 24" ~129° 02’
East. As the longest river in Korea, it has its
basin area of 26,219 km’ and main channel
length of 467.7 km. The river shows multiple
types of dendritic and fan shape (Figure 1).

Han river basin has 145 observation stations

B o
0 iton Hajang
o o Sabuk

O Rointall gouge

Figure 1. Han river basin and raingauge stations (The basin is

also divided into plain, mountain and intermediate areas).
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for rainfall, which consist of 85 stations of
the ministry of construction, 10 stations of the
meteorological office, and 50 stations of
KOWACO (Korea Water Resource Corpora-
tion). The data used in the research is from
51 raingage stations randomly selected (see
Table 2). For the comparison of rainfall
characteristics of plain and mountain area, we
also arbitrarily divided the Han river basin
into three regions, the plain area, the mountain
area and the intermediated area. The plain
area is located in the downstream part of Han
river basin between Paldang Dam and the
estuary where the hill slope is about 0.1~0.2
m/km. On the other hand, the mountain area
is located in the upstream part of Han river
basin where the hill slope is about 0.44~1.33
m/km. The raingauge stations located in the
plain area and mountain area are marked in
Table 2. As can be seen from the Table 2,
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each station has different record length, but in
the resecarch, the data recorded between 1988
and 1997 were used for the model parameter
estimation. Also, the parameter estimation is
limited during the wet season from May to
October as the data recorded during the dry
season is relatively poor.

The estimation of basic statistics is a key
part for the analysis of data and also for the
The mean,
and 6hr-
duration data for each month and also for the

model parameter estimation.

variance, and covariance of 1lhr-
downstream plain area, upstream mountain area
and all the basin, separately, are summarized
in Tables 3, 4, and 5. These statistics are
those to be used for the model parameter
estimation. As can be seen from the tables,
the rainfall in the plain area has higher mean
values, but lower correlation coefficients than
those of mountain area. The variance in the

Table 2. Raingage stations used (Among them, the raingauges in the plain area are marked
as 3, and those in the mountain area are marked as A)

Station Record year Station Record year Station Record year
Haenggye 1968 ~ 1996 Tanyang 1965~ 1996 Wontong 1988 ~ 1996
Chinbu 1965~ 1996 Koesan 1965 ~1996 Changchon 1965~ 1996
Wangsan 1988~ 1996 Cheongpung 1981 ~1996 Hyunlli 1988 ~ 1996
Imgye” 1965~ 1996 Yeongchun 1988 ~ 1996 Inje 1965~ 1996
CheongseonA 1981~ 1996 Puron 1965 ~1996 Chuyang 1988 ~ 1996
Hajang 1988 ~1996 Chungju Dam 1988 ~1996 Chuncheon 1965~ 1996
Sabuk 1988 ~1996 Chungil 1965~1996 Naechon 1965 ~ 1996
Bongpyung 1965 ~1996 Haengsung 1965~ 1996 Hongcheon 1967~ 1996
Dachwa 1988 ~ 1996 Ganhyun 1967 ~1996 Seomyeon 1965~ 1996
Bangrim 1988 ~1996 Munmark 1984 ~1996 Kapyeong™ 1965 ~1996
Suju 1965 ~1996 Saenggeuk 1966~1996 | Cheongpye-ong™ 1981 ~1996
Yungwol® 1965 ~ 1996 Yongin 1965~ 1996 Naksaeng 1965 ~ 1996
Pyeongchang 1965~ 1966 Icheon™ 1979~ 1996 Uijeongbu™ 1965 ~1996
Mitan® 1965~ 1996 Yeju 1965~1996 Kuro 1986 ~ 1996
Paegun 1965~ 1996 Yangpyeong™ 1979 ~1996 Seongnam™ 1986 ~ 1996
Checheon 1988~ 1996 Hwacheon Dam 1981 ~1996 Anyang” 1986 ~1996
Sangdong” 1965 ~1996 Seohwa 1965~ 1996 Toegyewon™ 1986~ 1996
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Table 3. Basic statistics for downstream plain area, Han river basin

Month Mean(1hr) Variance(1hr) Corr.(1hr) Variance(6hr) Corr.(6hr)
5 0.121 0.890 0.493 11.864 0.409
6 0.190 1.664 0.500 27.130 0312
7 0.446 5.830 0.451 86.877 0.328
8 0.376 4.799 0471 81.736 0.323
9 0.224 2.541 0.548 53.222 0.405
10 0.038 0.382 0318 3.003 0.165

Table 4. Basic statistics for upstream mountain area, Han river basin

Month Mean(1hr) Variance(1hr) Corr.(1hr) Variance(6hr) Corr.(6hr)
5 0.111 0.820 0416 12.075 0.337
6 0.200 3.266 0.367 35.424 0.265
7 0.397 4.208 0.482 74.355 0.354
8 0.326 4.693 0.395 58.756 0.291
9 0.232 2.207 0.510 42.687 0.392
10 0.025 0.078 0.334 0.977 0.185

Table 5. Basic statistics for overall Han river basin

Month Mean(1hr) Variance(1hr) Corr.(1hr) Variance(6hr) Corr.(6hr)
5 0.116 0.860 0.460 11.954 0.378
6 0.195 2351 0.443 30.684 0.292
7 0.425 5.135 0.464 81.510 0.339
8 0.355 4.754 0.439 71.887 0.309
9 0.227 2.398 0.532 48.707 0.399
10 0.032 0.252 0.325 2.135 0.173

plain area seems more or less the same as in
the mountain areca. We can also find obvious
statistics  as

monthly differences of each

already well known in the monsoon area.

4.2 Parameter Estimation
The estimation procedure presented in this
paper utilizes a combination of physically

determined  parameters and  parameters
estimated from data. Three parameters, D, o
and U,

consideration and kept fixed while other six

were determined from physical
were estimated using the method of moments.

Islam et al. (1988) recommended that D
and o of nine parameters should be estimated
data.  Ideally, the

from  meteorological

parameters describing the physical structure of
the rainfall field should be measured and
recorded through time at the area of interest
Unfortunately,
while the parameters describe the physical
structure of the rainfall field, they are not
normally observed features in the atmosphere.
The works of Austin and Houze (1972) and

Sorman (1972) provide fairly reasonable ranges

and then wused as constants.

within which the parameter values will be
found but specific values of the parameters are
(1988)
conducted a sensitivity analysis of each of the

generally not known. Islam et al.
parameters on the autocorrelation function as
defined by the WGR model and concluded

that the D and ¢ could be held constant
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Table 6. Parameter estimated for downstream plain area, Han river basin
Month Am A E(v) ¢ e ECi)
(storms/min) (cells/min) (cells/CPC) (min ") | (CPCs/km?) (mm/min)
5 0.0170 1.1562 6.2188 3.1891 0.0015 71.0938
6 0.0245 1.0313 5.6563 3.1891 0.0014 71.0938
7 0.0231 1.0117 9.8398 1.0117 0.0020 82.5195
8 0.0214 1.2477 4.2493 3.3366 0.0022 218.7500
9 0.0153 1.0391 9.6641 3.1074 0.0015 83.3984
10 0.0109 1.0625 4.8125 3.2780 0.0015 92.1875
Table 7. Parameter estimated for upstream mountain area, Han river basin
Month Am 8 E(v) “ e E)
(storms/min) (cells/min) (cells/CPC) (min 1) (CPCs/km?) (mm/min)
5 0.0240 1.0020 5.9199 3.1130 0.0015 65.3809
6 0.0146 1.0211 9.3131 3.1724 0.0021 92.1872
7 0.0367 1.0313 10.7188 3.1297 0.0019 85.1563
8 0.0330 1.0938 9.5938 3.3672 0.0017 141.4063
9 0.0237 1.0020 9.2949 4.0519 0.0015 82.9590
10 0.0170 1.0312 3.4063 4.6734 0.0013 71.0938
Table 8. Parameter estimated for overall Han river basin
Month Am B E(v) a ¢ E(4)
(storms/min) (cells/min) (cells/CPC) (min ~1) (CPCs/km?) (mm/min)
5 0.0165 1.0020 10.9824 3.5843 0.0013 67.1387
6 0.0147 1.0584 9.3123 3.1603 0.0021 92.1875
7 0.0244 1.0234 9.5234 3.1520 0.0017 86.9141
8 0.0350 1.0020 8.6973 3.1390 0.0020 116.3574
9 0.0234 1.1113 9.8574 3.1019 0.0015 80.3223
10 0.0105 1.4063 5.6563 3.6641 0.0011 71.0938

without adversely affection the estimation. In
this research D and ¢ are chosen to be 7~
9 km and 1.6~2.6 km, respectively, from the

observation of radar snapshots. The cell
velocity U was determined from the
climatological conditions for each month,

which was set to be 7 to 11 km/hr (Korea
Administration, 1995). Other
parameters estimated are summarized in Tables
6, 7 and 8.

Meteorological

4.3 Comment on the Parameters estimated

Tables 6, 7 and 8 summarize the parameters

estimated for each month and for downstream
plain area, upstream mountain area and overall
Han river basin. As can be seen from the
tables, the high rainfall amount during summer
is mainly due to the arrival rate of rain bands,
mean number of cells per cluster potential
center, and raincell intensity. Considering the
slight increase of the arrival rate of rain bands
and the mean number of cells per cluster
potential center during summer, exceptionally
very high values of rain cell intensity in
August is

worth noting. Other parameters

controlling the mean number of rain cells per
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cluster, the cellular birth rate, and the mean
cell age are found invariant to the rainfall
amounts.

In the application to the downstream plain
area and upstream mountain area of the Han
in the

parameter estimates could be found. However,

river basin, no obvious difference
the number of storms in the mountain area
was estimated a little higher than that in the
in the

mountain area a little lower than that in the

plain area and the cell intensity
plain area. Thus, due to the orographic effect,
more frequent but less intense storms can be
expected in the mountain area, but the total
amount of rainfall in a given period seems to
remain the same.

5. Conclusions

In this study, we characterized the seasonal
variation of rainrate fields in the Han river
WGR  multi-dimensional

basin using the

precipitation model. The characterization of
rainrate fields was done by estimating and
comparing the parameters derived for each
month and for the plain area, the mountain
area and overall basin, separately. The first-
statistics ~ derived  from

and second-order

observed point gauge data were used to
estimate the model parameters based on the
Davidon-Fletcher-Powell algorithm of optimiza-
tion.

As a result of the study, we can find that
the higher rainfall amount during summer is
mainly due to the arrival rate of rain bands,
mean number of cells per cluster potential
center, and raincell intensity. However, other
parameters controlling the mean number of
rain cells per cluster, the cellular birth rate,
and the mean cell age are found invariant to
the rainfall amounts.

In the application to the downstream plain

Water Engineering Research, Vol. 1, No. 2, 2000

area and upstream mountain area of the Han

river basin, no obvious difference in the
parameter estimates could be found. However,
the number of storms in the mountain area
was estimated a little higher than that in the
in the

mountain area a little lower than that in the

plain area and the cell intensity

plain area. Thus, due to the orographic effect,
more frequent but less intense storms can be
expected in the mountain area, but the total
amount of rainfall in a given period seems to
remain the same.
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