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ABSTRACT: There are many sources of systematic
variations in ¢cDNA microarray experiments which affect
the measured gene expression levels like differences in
labeling efficiency between the two fluorescent dyes.
Print-tip lowess normalization is used in situations where
dye biases can depend on spot overall intensity and/or
spatial location within the array. However, print-tip lowess
normalization performs poorly in situation where error
variability for each gene is heterogeneous over intensity
ranges. We proposed the new print-tip normalization
methods based on support vector machine regression
(SVMR) and support vector machine quantile regression
(SVMQR). SVMQR was derived by employing the basic
principle of support vector machine (SVM) for the
estimation of the linear and nonlinear quantile regressions.
We applied our proposed methods to previous cDNA
microarray data of apolipoprotein-Al-knockout (apoAI-KO)
mice, diet-induced obese mice, and genistein-fed obese
mice. From our statistical analysis, we found that the
proposed methods perform better than the existing print-tip
lowess normalization method.

1 INTRODUCION

The technique of cDNA microarray is a new tool in
biotechnology, which allows the simultaneous monitoring of
thousands of gene expression in cells [1]. This technology
has important applications in pharmaceutical and clinical
research. By comparing gene expressions in normal and
tumor tissues, for example, we can use microarrays to
identify tumor-related genes and targets for therapeutic
drugs [2].

In a cDNA microarray experiment, two mRNA samples
(to be compared) are reverse transcribed into cDNA, labeled
using two different fluorescent dyes (usually a red
fluorescent dye, CyS5, and a green fluorescent dye, Cy3) and
then hybridized simultaneously to the arrayed DNA
sequences or probes on the glass slide. Intensity values
generated from hybridization to individual DNA spots are
indicative of gene expression levels, and the relative
abundance of each transcript in the two samples is derived
from the resulting intensity ratios [3].

The main idea of normalization for dual labeled arrays is
to adjust artifactual differences in intensity of the two labels.
Such differences result from differences in affinity of the
two labels to DNA, differences in amounts of sample and
label used, differences in photomultiplier tube and laser
voltage settings, and differences in photon emission
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response to laser excitation. Although normalization alone
cannot control all systematic variations, a choice of the
normalization method is important in the earlier stage of
microarray data analysis because subsequent analyses, such
as differential expression testing, clustering, and gene
networks are quite dependent on the pre-processing steps
such as image analysis and normalization procedure [4, 5].

Yang et al. [6, 7] summarizes a number of normalization
methods for dual labeled microarrays, such as intensity
dependent normalization and print-tip lowess normalization.
Some other nonlinear normalization methods have been
employed, such as B-splines and Gaussian-kemel fitting [8,
9]. Recently, Baird et al. [10] proposed the normalization
using spatial mixed models which include splines and Eckel
et al. [11] proposed semiparametric normalization procedure
utilizes a linear model. However, to date, evaluation of
normalization methods applicable to the microarray data
where error variability for each gene is heterogeneous over
intensity ranges, has not been investigated. We propose
some new print-tip normalization methods based on support
vector machine regression (SVMR) and support vector
machine quantile regression (SVMQR), which perform well
in microarray data with heterogeneous error variability
depending on signal intensity.

The support vector machine (SVM) was initially
developed by Vapnik [12, 13] and his group to solve
classification problems and has been successfully applied to
a number of real world problems, such as: handwritten
character and digit recognition; face detection; text
characterization and object detection in machine vision.
Recently, its applications have been extended to the domain
of regression problems. SVM is based on the structural risk
minimization (SRM) principle, which has been shown to be
superior to traditional empirical risk minimization (ERM)
principle. SRM minimizes an upper bound on the expected
risk while ERM minimizes the error on the training data. By
minimizing this bound, high generalization performance can
be achieved. In particular, for the SVM regression case,
SRM results in the regularized ERM with the
& -insensitive loss function. An introduction and overview
of recent developments of SVM regression can be found in
Cristianini and Shawe-Taylor [14], Gunn [15], Smola and
Scholkopf [16] and Vapnik [12, 13]. Recently, Takeuchi
and Furuhashi [17] propose non-crossing quantile
regression curves via SVM.

In this article, we present an estimation method for
linear and nonlinear quantile regressions using the basic
principle of SVM. Following this, we propose new
print-tip normalization methods based on SVMR and



SVMQR in order to adjust systematic variations in
situations where dye biases can depend on spot overall
intensity and/or spatial location within the array. We also
evaluate the performance of these normalization methods by
using the mean of variance in gene expression for each gene
separately, within each experimental group as a measure.

A summary of the paper proceeds as follows. In the
SYSTEMS AND METHODS section, we present SVMQR
and the related normalization methods. In the RESULTS
section, we apply our proposed normalization methods to
cDNA microaray data of apolipoprotein Al (apo Al)
knockout mice, diet-induced obese mice, and genistein-fed
obese mice, and present the comparison results. Finally,
CONCLUSION and DISCUSSION is given.

2 Support Vector Machine Quantile
Regression (SVMQR)

Takeuchi and Furuhashi [17] address the
quantile-crossing problem using SVMR approach. With the
commonly used kemel trick, they derive a non-crossing
conditional quantile estimator in the form of a constrained
maximization of a piecewise quadratic function. In a similar
setting, we derive linear and nonlinear quantile regression
methods by implementing the idea of SVM. In particular,
consider a random sample

(xi,yi)e Rd xR, i=1..,n,
where the output variable y; is related to the vector X,

of covariates, possibly including a constant term.
2.1 Linear SVMQR

In the linear quantile regression model introduced by
Koenker and Bassett [18], the quantile function of the

response y; for a given X, is assumed to be linearly
related to the input vector X; as follows:

00| x;) = A(O) x; for6 e (0, 1),
where pB(0)is the &—th regression quantile and its

estimator is defined as any solution to the optimization
problem,

min § 0y = B0)' x) for 0@,
j=

where pg is the check function defined as
pg(r)=6GI(r 2 0)+(@-Dri(r<0).
We now describe how to implement the idea of SVM
for the linear quantile regression. Since quantile
regression is in principle based on absolute deviation
loss, we adopt the procedures of the case ¢ =0 ina
standard SVM to derive quantile regression using the

idea of SVM. Because Vapnik's & — insensitive loss

function described by

[0 wse
M" B {|§ l —¢ otherwise’

and the case &£=0 corresponds to considering
standard absolute deviation loss function. Furthermore, we
make the intercept term invisible in the expression by
including it in the regression coefficient vector, in order to
follow the above basic idea of quantile regressions and to
avoid computation of the intercept b in the same manner
as SVM. We do so for the sake of convenience. Indeed,

reexpress wand x; as w=(b, w') and x;=(, x;)'

(with an abuse of notation, we use the same notation for the
resulting new vector). Then, we can express the linear
quantile regression problem by implementing the
formulation for SVM.

Minimize %uwnz FCEO5+U-0)8) for
8e(0,1), )
yi-w'x; S &
subject to wtxl- -y; < é‘; ,

£& 20

where the 6O —1th regression quantile S(0) is

expressed in terms of w, & is upper training error,

*
and £ is lower training error. The constant C > (0
determines the trade off between the flatness of f and

the amount up to which deviations larger than 0O are
tolerated. We construct a Lagrange function as follows:

1 2 n * n {
- E||w|| +C2(0 6 +(1-0) &) - 1§~y +W'xy)
n o x * t n * %
‘El“i Gi +yi—w Xi)—i§1(0i5i +7; &5 ) )}

We notice that the positivity constraints a,-,a,-',n,-,q: >0

should be satisfied. After taking partial derivatives of
equation (1) with regard to the primal variables (w, &, 5;)

and substituting them into equation (1), we have the

optimization problem

1 n * * t hn *
max —— ?:( a; - a; )(ai—al.)xixj+ .Z(ai—ai )Y
a,a ihj=1 i=1

with constraints «; € [0,6C] and a; e[0, 1-6)C].
Solving this optimization problem with the constraints

*
i , the

6 — th regression quantile estimators, and the 6 —1h
quantile function predictors of the input vector X where
the latter two are defined respectively as follows:

W:Z(&,— ~&')x; and Q(0|x)=zll(0?i -4/) x| x.

determines the optimal Lagrange multipliers, &;,a
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2.2 Nonlinear SVMQR

In nonlinear quantile regression, the quantile function of
the response y, for a given x; is assumed to be

nonlinearly related to the input vector x; eR? . For
nonlinear quantile regression, the input vector x; is
nonlinearly transformed into a potentially higher
dimensional feature space R/ by some function ¢(-).

Here, similar to SVM for nonlinear regression, the nonlinear
regression quantile estimator cannot be given in explicit
form since we use the kernel function of the input vector
instead of the dot product of their feature mapping function.

The quantile function of the response y; for a given Xx;
can be given as

Q01x,) = B(6) $(x;) for (0, 1),
where f(0) is the 6—1rh regression quantile. Then, by
constructing the Lagrangian with kernel K(-, -), we obtain

the optimal problem similar to the linear quantile regression
case as follows

i((li—

i, j=1

max -
a,a

with constraints «; €[0,6C] and a,»‘ ef[0,(1-6)C] .
Solving the above optimization problem with the constraints

1 N . =
5 a; Na;—a;)K(x;, xj)"'zyi(ai_a:
i=1

we obtain the optimal Lagrange multipliers, &;, &; , so that

the #-rh quantile function predictor given the input
vector X can be obtained as

0061%)=) (& -G ) K(x;, %).

i=1
2.3 Normalization methods.

In this section, we propose new print-tip normalization
methods based on both Vapnik’s support vector machine
regression (SVMR) and our proposed support vector
machine quantile regression (SVMQR). The new print-tip
SVM quantile median regression (SVMQMR) and SVM
interquantile mean regression (SVMIQMR) normalizations
are derived.

2.3.1 Print-tip SVMR normalization.

Each M-value ( log,(R/G) )
subtracting from it the corresponding value of the tip group
SVMR curve. The normalized log-ratios N are the
residuals from the tip group SVMR, i.e.,

N=M-SVMR(4),
where SVMR;(A4) is SVMR curve as a function of A-value
(logy(R/G) ) forthe i th tip group.

We used the R implementation svm () that is based on
LIBSVM [19] for the implementation of SVMR. The
regularization parameter C, the kemel parameter o , and
& are chosen using a 10-fold cross validation.

is normalized by

)
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2.3.2 Print-tip SVMQMR normalization.

Each M-value is normalized by subtracting from it the
corresponding value of the tip group SVM 0.5-1h
quantile regression curve. The normalized log-ratios N
are the residuals from the tip group SVM 0.5 —th quantile
regressions, i.e.,

N =M — SVMOMR;(4),

where SVMOMR,(4) is SVM 05-th quantile
regression curve as a function of A —value for the ith tip
group.

The regularization parameter C and the kemel
parameter o are chosen using 10-fold cross validation for
the implementation of SVM quantile median regression.

2.3.2 Print-tip SVMIQMR normalization

Each M-value is normalized by subtracting from it the
corresponding average value of the tip group SVM
0.25—1th quantile regression curve and the tip group SVM
0.75-th quantile regression curve. The normalized

log-ratios /N are the residuals from the average of the tip

group SVM  0.25 - th quantile regressions and the tip group

SVM 0.75 — th quantile regressions, i.e.,
N=M—-(SVMOL;(4)+ SVYMQ3,(A)/2,

where SVMQL;(A) is SVM 0.25—th quantile regression

curve as a function of A —value for the ith tip group and
SVMQ3,(A) is SVM 0.75-th quantile regression curve

as a function of A —value for the i th tip group.

The regularization parameter C and the kernel
parameter o are chosen using 10-fold cross validation for
the implementation of SVM quantile regression.

3 RESULTS

We apply our print-tip SVMR, SVMIQMR, and
SVMQMR normalization methods to previous cDNA
microarray data of apolipoprotein-Al —knockout (apoAI-KO)
mice, diet-induced obese mice, and genistein-fed obese
mice.

The cDNA microarray data of apoAI-KO mice, which
compares the gene expression profiles between a test group
of six mice with the apoAl gene knocked out and a control
group of six normal mice, was previously reported in
Callow et al. [20]. Target cDNA is obtained from mRNA of
six apoAI-KO mice and six normal C57BL/6J mice by
reverse transcription and labeled with a red fluorescent dye,
Cy5. The control sample used in all hybridizations is
prepared by pooling cDNA from the eight normal C57BL/6J
mice and labeled with green fluorescent dye, Cy3. Here, we
analyze the data from 6 different hybridizations performed
with target cDNA from three apoAI-KO mice and three
normal C57BL/6J mice. Probes are spotted onto glass slides
using 4 x 4 print head.

The second data is from a cDNA microarray experiment
of diet-induced obese mice(E/F) reported previously in Kim
et al. [21]. The experimental group consists of 6 mice
supplemented with a high-fat diet (HFD) for 12 weeks and a
control group consists of age/weight-matched 6 mice



supplemented with low-fat diet (LFD) for 12 weeks. Equal
amounts of RNA from six mice of each group are pooled
and each sample is equally divided; one half is used to
generate Cy3-labeled cDNA, and the other halfis used to
generate Cy5-labeled cDNA for dye swapping. Six technical
replicates of hybridization are performed, and three of these
are repeated with the fluorophores reversed to prevent
dye-bias. The Cy5 and Cy3 probes are mixed and
hybridized to microarray containing 10,336 cDNA probes.
Probes are spotted onto glass slides using 4 X 8 print head.
The two fluorescent images (Cy3 and Cy5) are scanned
separately by a GMS 418 Array Scanner (Affymetrix), and
the signal intensity values are obtained from ImaGene 4.2
(Biodiscovery) and MAAS (Gaiagene, Seoul, Korea)
software.

The third data is from a cDNA microarray experiment
of genistein-fed obese mice (E/B) reported previously in
Kim et al. [21]. Thirty mice wererandomly assigned to one
of three dietary groups (n=10) for 12 wk; a low-fat diet
(LFD), a high-fat diet (HFD) and the HFD supplemented
with genistein (2 g/kg diet) (HFD+GEN). Equal amounts of
the RNA from six mice of each group were pooled, and each
pooled RNA sample was equally divided; one half was used
to generate Cy3-labeled cDNA, the other halfwas used to
generate Cy5-labeled cDNA for dye swapping. We analyze
the data from 6 different hybridizations performed with
target cDNA from HFD+GEN mice and control cDNA from
HFD mice.

Figure 1 shows the M versus A plot of each dataset
(Figure 1) (in the same fashion as Figure 1 in Yang et al
(2001)), where the log-ratio is given by
M =1log,(R/G) and average log-intensity is given by

A =log2s/1TG— . Plots (b) and (c) show a tendency of
increasing dispersion of the log-ratio M as the spot intensity
A decreases. Lowess regression curves appear to have
narrower spacing in regions of high average log-intensity A
and wide spacing in regions of low average log-intensity A.
The conditional distribution of the log-ratio M may be
asymmetric and heteroscedastic.

(c) Genistein-fed obese mice data

Figure 1: M versus A plot of each dataset displaying the
lowess curve for each of the print-tips. Here “g” denotes the
lowess curve for the entire dataset.

Generally, diagnostic plots such as M versus A plots,
density plots, box plots and spatial plots can be used for
visually comparing different normalization methods or for
checking whether the artifacts have been removed by
normalization in microarray analysis. In addition to M
versus A plots, we adopt the mean of variance in gene
expression for each gene separately, within each
experimental group in order to compare different
normalization methods. The variance in gene expression for
each gene separately, within each experimental group is
estimated as

m_ 1
O’ = 1(m1-1)ZZ(M"f R

=1 j=1

m
where A7. J =%Z M, , g is an index over n genes,
i=1
i is anindex over m replicates, and j is an index over
| experimental groups. The smaller variance estimates
provide better normalization methods. Table 1 shows the

mean of &,° values for apoAI-KO mice data,

g
diet-induced obese mice data, and genistein-fed obese mice
data, respectively.

ApoAI-KO mice data

Raw print-tip | print-tip| print-tip print-tip
lowess | SVMR [SVMIQMR] SVMQMR

0.135] 0.095 | 0.094 0.094 0.098

Diet-induced obese mice data

Raw print-tip | print-tip| print-tip print-tip
lowess | SVMR |SVMIQMR| SVMQMR

0.877| 0.759 | 0.737 0.729 0.743

Genistein-fed obese mice data

Raw print-tip | print-tip| print-tip print-tip
lowess | SVMR |SVMIQMR| SVMQMR

1.125( 0.758 | 0.729 0.702 0.738

Table 1: The mean of variance in gene expression for
each gene separately, within each experimental group in
each dataset.

For apoAI-KO mice data, print-tip SVMR and
SVMIQMR normalization methods provide the lowest the

mean of &gz value and print-tip lowess normalization

method also provide low the mean of c}gz value. For

diet-induced obese mice and genistein-fed obese mice,
print-tip SVMIQMR normalization method provide the

lowest the mean of &g2 value and print-tip lowess

normalization method provide the largest the mean of o"-g2

value, This result implies that print-tip SVMR and
SVMIQMR normalization methods provide superior
performance as compared to print-tip lowess regression
normalization method. We observe that print-tip SVMR and
SVMIQMR normalization methods provide consistently
good performance with apoAI-KO mice data, diet-induced
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obese mice and genistein-fed obese mice, while print-tip
lowess normalization method perform poorly with
diet-induced obese mice and genistein-fed obese mice. In
particular, print-tip SVMIQMR normalization method
seems to be the best.

Broberg [22] compared the average ranks of the four
testing methods such as B-statistic, SAM, samroc and
T-statistic. We also use the average ranks of SAM method
(significance analysis of micoarrays) [23] of the reference
genes. The selection of reference gene is not an easy task,
since it is usually not known which genes are true positives
for a specific biological sample. Even the “verification” of
microarray results by an conventional technique such as
quantitative RT-PCR is just replacing one error-prone
method by another. For the diet-induced obese mice, we
used 106 reference genes which selected differentially
expressed genes to be detected by previous our work [21].
For the Apo AI-KO mice data, we use 8 reference genes
previously verified as differentially expressed genes.

ApoAI-KO mice data (8 genes)

print-tip | print-tip| print-tip print-tip
lowess | SVMR [SVMIQMR | SVMQMR
Average | 5.12 5.12 4.5 5.25

Diet-induced obese mice data (106 genes)

print-tip | print-tip| print-tip print-tip
lowess | SVMR [SVMIQMR| SVMQMR
Average | 59.56 | 58.77 58.08 58.75

Table 2: Average ranks of SAM of the reference genes in
each dataset.

For the Apo AI-KO mice data, print-tip SVMIQMR
normalization method provides the lowest average rank and
print-tip lowess and print-tip SVMR normalization methods
also provide low average rank. For diet-induced obese mice
data, print-tip SVMIQMR normalization method provides
the lowest average rank and print-tip lowess normalization
method provides the largest average rank.

4 CONCLUSION AND DISCUSSION

In this paper, we propose new print-tip normalization
methods based on SVMR and SVMQR in order to adjust
systematic variations in situations where dye biases can
depend on spot overall intensity and/or spatial location
within the array. One of the problems of lowess regression
is that it performs poorly in situations where error
variability for each gene is heterogeneous over intensity
ranges. Diet-induced obese mice and genistein-fed obese
mice data presented in the RESULT section are shown to be
heteroscedastic. In essence, for such data with
heteroscedasticity, SVM and SVMQ regressions perform
‘robustly since both methods use a version of absolute. It
turns out that our proposed print-tip SVMR and print-tip
SVMIQMR normalization methods perform superior to
print-tip lowess normalization method for microarray data
with heteroscedasticity such as diet-induced obese mice and
genistein-fed obese mice data. It is established that print-tip
SVMR and SVMIQMR normalization methods give
consistently superior performance in apoAI-KO mice data,
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diet-induced obese mice and genistein-fed obese mice,
while print-tip lowess normalization method perform poorly
with diet-induced obese mice and genistein-fed obese mice.
Print-tip SVMIQMR normalization method appears to be
the best and print-tip SVMR normalization method also
performs well.

Although our print-tip normalization has a little complex
than print-tip lowess normalization, for data with in the
presence of heteroscedasticity, our print-tip normalization
can be obtained more informative than print-tip lowess
normalization. Lowess normalization is actually concerned
with the estimation of conditional mean of response variable
given input variables. By the way, quantile regression deals
with the estimation of conditional median or the 8 —th
quantile of response variable given input variables.
Therefore, if we apply informations on several quantiles of
response variables to normalization, for data with in the
presence of heteroscedasticity due to systematic variations,
our print-tip normalization methods based on support vector
machine quantile regression gives much better
normalization than the existing print-tip lowess method only
using overall central tendency.
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