• Title/Summary/Keyword: intense pulsed light (IPL)

Search Result 21, Processing Time 0.036 seconds

Facile Fabrication of $TiO_2$ Photoelectrodes Using Intense Pulsed Light for Dye-Sensitized Solar Cells

  • Jin, Hwa-Yeong;Yu, Gi-Cheon;Lee, Jin-A;Im, Jeong-A;Kim, Ji-Hyeon;Go, Min-Jae
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.228-228
    • /
    • 2013
  • Dye-Sensitized Solar Cells (DSSCs) have attracted great interests as they offer high energyconversion efficiencies at low cost. For the conventional fabrication of DSSCs, high temperature sintering is required for the construction of interconnect $TiO_2$. However, more simplified process which can be applicable to large-sized solar cells module, is strongly necessary for the commercialization of DSSCs. In this work, we developed novel sintering method using Intense Pulsed Light (IPL), which can replace the conventional high temperature sintering methods. The photovoltaic properties of DSSCs utilizing IPL methods will be reported.

  • PDF

Effect of Sterilization by Intense Pulsed Light on Radiation-resistant Bacterium, Micrococcus roseus (방사선 저항세균 Micrococcus roseus의 광펄스 살균 효과)

  • Kim, Bora;Kim, Ae-Jin;Shin, Jung-Kue
    • Korean Journal of Food Science and Technology
    • /
    • v.45 no.2
    • /
    • pp.248-251
    • /
    • 2013
  • The purpose of this study was to investigate the inactivation effect of intense pulsed light (IPL) on Micrococcus roseus, an irradiation-resistant bacterium isolated from laver, and the commercial feasibility of this sterilization method on dried laver. The inactivation of M. roseus in cultivated plates increased with increasing light intensity and treatment time. Approximately 6.6 log CFU/mL reduction of the cell viability was achieved with IPL treatment for 3 min at 1,000 V of light intensity, tailing was not shown. In addition, the inactivation rate of M. roseus increased with increasing pulse number at same light intensity and treatment time. The killing efficiency for M. roseus increased with by decreasing the distance between the light source and the sample surface.

A Study of Mechanical Property Enhancement of Polymer Nanostructure using IPL Treatment (IPL 처리를 통한 고분자 나노구조의 기계적 특성 향상 연구)

  • Kim, D.;Kim, D.I.;Jeong, M.Y.
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.27 no.4
    • /
    • pp.113-117
    • /
    • 2020
  • In this paper, We investigated the effect of heat treatment process using photo-thermal effect in order to improve mechanical properties of nanostructure on polymer films made by nanoimprint process with hybrid resin. Nanostructures which have a low refractive characteristic were fabricated by UV nanoimprint and after that heat treatment was performed using IPL (intense pulsed light) under process condition of 550 V voltage, pulse width 5 ms, frequency 0.5 Hz. The transmittance and mechanical property of fabricated nanostructure films were evaluated to observe changes in the pattern transfer rate and mechanical properties of nanostructures. The transmittance of the nanostructure was measured at 97.6% at 550 nm wavelength. Nanoindentation was performed to identify improved anti-scatch properties. Result was compared by the heat source. In case of post treatment with IPL, hardness was 0.51 GPa and in the case of hotplate was 0.27 GPa, resulting the increase of hardness of 1.8 times. Elastic modulus of IPL treated sample was 5.9GPa and Hotplate treated one was 4GPa, showing the 1.4 time increase.

Development of the High Voltage Converter for the Pulsed Light Sterilization (광펄스 살균을 위한 다채널 고전압 컨버터의 개발)

  • Lee, Young-Woo;Kim, Hyung-Won;Choi, Woo-Jin
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.26 no.6
    • /
    • pp.29-37
    • /
    • 2012
  • As the demand for the fresh non-thermal food is increased, it is required to develop the fast and perfect sterilization method. The conventional sterilization method using ultraviolet lamp has some disadvantages such as imperfect sterilization and longer process time. In this research, IPL(Intense Pulsed Light) sterilization system is introduced to overcome the drawbacks of the conventional system, and suitable power supply architecture for the system is discussed. Since the IPL sterilization system uses Zenon lamps which requires the 600~2,100[V] for the lightning and 16~30[kV] for the trigger, the converter for the system should be able to generate the high voltage and to discharge the large amount of energy instantaneously. In this research a new power system architecture which has a modified forward converter topology with two switches for generating high voltage and a capacitor bank to control the energy for the lightning by switching is introduced.

Changes in Physicochemical Properties of Paprika by Intense Pulsed Light Treatment (광펄스 처리에 의한 파프리카의 이화학적 변화)

  • Hong, Hee Joung;Kim, Ae-Jin;Park, Hee Ran;Shin, Jung-Kue
    • Korean Journal of Food Science and Technology
    • /
    • v.45 no.3
    • /
    • pp.339-344
    • /
    • 2013
  • Application of intense pulsed light (IPL) treatment is an emerging technology with interesting prospects in food preservation. However, information concerning the factors affecting the inactivation of microorganisms and their impact on the quality of fresh-cut food is scarce. In this study, the effects of IPL treatment on the microbial inactivation and physicochemical change in paprika were determined. The viability of bacteria in paprika treated with IPL decreased slightly with the treatment time. In addition, water content was slightly decreased after IPL treatment regardless of the color of paprika. However, except in red paprika, sugar content increased after IPL treatment. The pH of paprika increased in all samples, and the polyphenol content decreased with treatment time, but these differences were very small. After IPL treatment of paprika, vitamin C content increased in yellow and red samples. Hunter color values-lightness (L), redness (a), and yellowness (b)-increased in red paprika, but all values decreased in orange paprika.

Sterilization of Rapeseed Sprouts by Intense Pulsed Light Treatment (고강도 광원을 이용한 새싹 채소의 살균)

  • Park, Heeran;Cha, Gyung-Hee;Shin, Jung-Kue
    • Korean Journal of Food Science and Technology
    • /
    • v.48 no.1
    • /
    • pp.36-41
    • /
    • 2016
  • In this study, the effects of intense pulsed light (IPL) treatment on microbial inactivation and quality in rapeseed sprouts were investigated. Untreated rapeseed sprouts exhibit a high level of total aerobic bacteria (TAB) ($1.2{\times}10^7CFU/g$), coliform bacteria (coliform) ($3.3{\times}10^6CFU/g$), and pathogenic E. coli (PE) ($2.1{\times}10^5CFU/g$). The microorganisms found on rapeseed sprouts decreased with exposure to increasing light intensity and treatment time. The greatest reduction in microbial content was observed with a treatment of 1000 V, 5 pps for 10 min, where TAB, coliform, and PE levels decreased to 1.0 log CFU/g, 1.6 log CFU/g, and 1.8 log CFU/g, respectively. In agreement with these data, the microbial inactivation rate increased with the increase in the distance between the light source and the samples during IPL treatment. After IPL treatment of rapeseed sprouts, water content and vitamin C content decreased.

Inactivation of Enterobacter sakazakii Inoculated on Formulated Infant Foods by Intense Pulsed Light Treatment

  • Choi, Mun-Sil;Cheigh, Chan-Ick;Jeong, Eun-Ae;Shin, Jung-Kue;Park, Ji-Yong;Song, Kyung-Bin;Park, Jong-Hyun;Kwon, Ki-Sung;Chung, Myong-Soo
    • Food Science and Biotechnology
    • /
    • v.18 no.6
    • /
    • pp.1537-1540
    • /
    • 2009
  • Enterobacter sakazakii is a representative microorganism whose presence in infant foods can cause serious disease. The purposes of this study were to determine the inactivation effects of intense pulsed light (IPL) on E. sakazakii and the commercial feasibility of this sterilization method. The inactivation of E. sakazakii increased with increasing electric power and treatment time. The cells were reduced by 5 log cycles for 4.6 and 1.8 msec of treatment at 10 and 15 kV of electric field strength, respectively. The sterilization effects on commercial infant foods were investigated at 15 kV. The cell population in an infant beverage, an infant meal, and an infant powdered milk product inoculated with E. sakazakii were inactivated exponentially as a function of time and reduced by 4.0, 2.5, and 1.5 log cycles for 9.4, 7.0, and 7.0 msec of treatment time, respectively.

Photo Epilation with Intense Pulsed Light for Thinning of Anterior Hairline after Hairline Correction Surgery in East Asians

  • Park, Jae Hyun;Lee, Seung Yong;You, Seung Hyun;Kim, Na Rae
    • Archives of Plastic Surgery
    • /
    • v.44 no.2
    • /
    • pp.157-161
    • /
    • 2017
  • Background Thin hairs are critical to achieve natural result in female hairline correction surgery. However, there are few studies on the usefulness of hair thinning by intense pulsed light (IPL) after hairline correction surgery in East Asian females. Methods Hair thinning using IPL was performed in 54 women who had complained about thick hairs along the frontal hairline after hairline correction surgery. Patient mean age was 31.2 years old and patients were an average of 2.1 years post-hairline correction surgery. Initial treatment used 10 J, while second and third sessions were conducted with 10 to 15 J according to responsiveness to treatment. Results Mean thickness of individual hairs assessed before the procedure was $78.86{\mu}m$. The mean number of procedures was 1.6 per patient. Forty of 54 subjects (74%) achieved satisfactory hair thinning with only one procedure from 78.01 to $66.14{\mu}m$ after treatment. The measured thickness was $66.43{\mu}m$ at the end of the first year in patients who were satisfied after one procedure. Thirteen cases achieved satisfactory hair thinning after two sessions. Mean thickness was $74.44{\mu}m$ and $67.51{\mu}m$, before and after the second session. One case required a third session with 15J, thinning from 89.00 to $66.50{\mu}m$. Conclusions Hair thinning by IPL is a very useful method to provide a natural look after hairline correction surgery in East Asians, who have naturally thick hair.

Contamination level of commercialized pepper and sterilization effect by intense pulsed light in batch system (시중 판매 후추의 오염도 및 회분식 광펄스 처리에 의한 살균 효과)

  • Park, Jihyun;Shin, Jung-Kue
    • Korean Journal of Food Science and Technology
    • /
    • v.48 no.5
    • /
    • pp.525-529
    • /
    • 2016
  • Twenty-nine pepper products commercially available in the market were collected and investigate for contamination levels. Pepper products purchased from traditional markets had a degree of contamination of $10^6-10^7CFU/g$ aerobic bacteria, $10^4-10^5CFU/g$ Bacillus sp., and less than $10^2CFU/g$ yeast and molds. Organic pepper showed a degree of contamination of $10^4$ aerobic bacteria, $10^2-10^3$ Bacillus sp., and less than $10^1$ yeast and molds. Intense pulsed light (IPL) treatment of 10 min (1,000 V, 5 pps and 4 cm sample-to-lamp distance) showed a bacterial death rate of 1.45-1.55 log for whole peppers, and of 0.8-0.85 log for black and white pepper powder. The sterilization rate using IPL was higher than that using other non-thermal sterilization methods, such as ozone treatment or low-pressure discharge plasma sterilization, indicating that the IPL sterilization method may find potential application in the industry. However, further studies may need to be conducted to enhance the effect of sterilization.

Flavor and taste characteristic of black pepper by different nonthermal sterilization methods (비가열 살균 후추의 향미특성)

  • Lee, Gwang Min;Shin, Jung Kue
    • Korean Journal of Food Science and Technology
    • /
    • v.51 no.6
    • /
    • pp.551-557
    • /
    • 2019
  • The purpose of this study was to investigate the changes of flavor and taste characteristics of black pepper treated with three different nonthermal sterilization methods, which are intense pulsed light (IPL), ultraviolet (UV), and cold plasma (CP). Also, the sensorial and instrumental evaluation of black pepper before and after nonthermal treatments were analyzed. As a result of color value, UV and CP treatments did not show chromacity difference (ΔE), but IPL treatment showed a significant difference of 6.58. Piperine contents of sample before nonthermal treatments was 10.7±0.53 mg/g and the piperine contents of all samples decreased after nonthermal treatments. The result of the electronic nose analysis were divided into two groups before and after nonthermal treatments, and divided into three group by principle component analysis. According to the intensity test, after nonthermal treatments, all sample had low flavor and taste, and the intensity was in the order of IPL, CP, and UV. In thirteen sensory attribute languages developed through quantitiative descriptive analysis (QDA), the intensity value of the samples were low after nonthermal treatments.