DOI QR코드

DOI QR Code

Changes in Physicochemical Properties of Paprika by Intense Pulsed Light Treatment

광펄스 처리에 의한 파프리카의 이화학적 변화

  • Received : 2013.01.23
  • Accepted : 2013.04.16
  • Published : 2013.06.30

Abstract

Application of intense pulsed light (IPL) treatment is an emerging technology with interesting prospects in food preservation. However, information concerning the factors affecting the inactivation of microorganisms and their impact on the quality of fresh-cut food is scarce. In this study, the effects of IPL treatment on the microbial inactivation and physicochemical change in paprika were determined. The viability of bacteria in paprika treated with IPL decreased slightly with the treatment time. In addition, water content was slightly decreased after IPL treatment regardless of the color of paprika. However, except in red paprika, sugar content increased after IPL treatment. The pH of paprika increased in all samples, and the polyphenol content decreased with treatment time, but these differences were very small. After IPL treatment of paprika, vitamin C content increased in yellow and red samples. Hunter color values-lightness (L), redness (a), and yellowness (b)-increased in red paprika, but all values decreased in orange paprika.

광펄스 처리는 식품의 표면에 오염되어 있는 미생물을 사멸시켜 식품의 저장성을 향상시킬 수 있는 비가열 살균 기술이지만 신선식품에 대한 미생물 사멸이나 이화학적 변화에 대한 연구는 거의 이루어지지 않고 있다. 본 실험은 광펄스 처리가 파프리카의 미생물 감균효과와 이화학적 품질 변화에 미치는 영향을 조사하였다. 파프리카에 존재하는 미생물은 1000 V, 5 pps로 10분간 광펄스 처리 후 약 90%정도의 사멸 효과를 보였으며, 미생물 감소효과는 파프리카의 색에 따른 차이는 없었다. 수분함량도 광펄스 처리 후에 모든 시료에서 다소 감소하는 경향을 보였다. 그러나 당도는 붉은색 파프리카를 제외하고 다른 처리구에서 증가하는 경향을 나타내었다. pH는 광펄스 처리 후 모두 증가하는 경향을 보였으며, 폴리페놀의 함량은 감소하는 경향을 보였으나 그 차이는 미미하였다. 비타민 C의 함량은 노란색과 붉은색 파프리카에서 광펄스 처리 후 증가하는 경향을 보였다. 광펄스 처리 후 색의 변화를 보면 붉은 색 파프리카의 경우에는 L, a, b값이 모두 증가하였으며, 주황색 파프리카는 모두 감소하였고, 노란색은 큰 변화를 보이지 않았다. 광펄스 기술에 의한 파프리카의 처리는 품질의 변화를 크게 일으키지는 않으면서 파프리카에 존재하는 미생물을 사멸하는 효과를 보여 향후 파프리카의 유통이나 저장에 있어 파프리카의 살균 기술로서의 가능성을 보였다.

Keywords

References

  1. Shin JK. High intensity pulsed light treatment for preservation and shelf-life extension of seafoods. ARPC Report No. 11-1541000-000776-01, Suwon, Korea (2010)
  2. Yu YM, Youn YN, Choi IU, Lee YH. Microbiological monitoring of paprika, and Bacterial contamination levels with respect to storage temperature. Korean J. Food Preserv. 18: 7-12 (2011) https://doi.org/10.11002/kjfp.2011.18.1.007
  3. Kim MH, Kim YJ, Kim KS, Song YB, Seo WJ, Song KB. Microbial changes in hot peppers, ginger, and carrots treated with aqueous chlorine dioxide or fumaric acid. Korean J. Food Preserv. 16: 1013-1017 (2009)
  4. Calvo L, Torres E. Microbial inactivation of paprika using highpressure $CO_2$. J. Supercrit. Fluid. 52: 134-141 (2010) https://doi.org/10.1016/j.supflu.2009.11.002
  5. Choi IL, Son JS, Kim IS, Lee YB, Kang HM. Effect of 1-MCP (1-methylcyclopropene) treatment on the quality and storability of paprika fruit during storage. J. Agri. Life Environ. Sci. 24: 43-49 (2012)
  6. Choi IL, Jung HJ, Kim IS, Kang HM. Effect of hot water treatments on storability of fresh cut paprika processed by disorder fruits. J. Agri. Life Sci. 21: 1-7 (2009)
  7. Staack N, Ahrne L, Borch E, Knorr D. Effect of infrared heating on quality and microbial decontamination in paprika powder. J. Food Eng. 86: 17-24 (2008) https://doi.org/10.1016/j.jfoodeng.2007.09.004
  8. Topuz A. Dincer C, Ozdemir KS, Feng H, Kushad M. Influence of different drying methods on carotenoids and capsainoids of paprika (Cv., Jalapeno). Food Chem. 129: 860-865 (2011) https://doi.org/10.1016/j.foodchem.2011.05.035
  9. Shin JK, Kim BR, Kim AJ. Nonthermal food processing technology using electric power. Food Sci. Ind. 43: 21-34 (2010)
  10. Hiramoto T. Method of sterilization. US Patent 4,464,336 (1984)
  11. Dunn JE, Clark RW, Asmus JF, Pearlman JS, Boyerr K, Painchaud F. Methods for preservation of foodstuffs. US Patent 4,871,559 (1989)
  12. Bolton JR, Linden KG. Sterilization of methods for fluence (UV dose) determination in bench-scale UV experiments. J. Environ. Eng. 129: 209-215 (2003) https://doi.org/10.1061/(ASCE)0733-9372(2003)129:3(209)
  13. Slieman TA, Nicholson WL. Artificial and solar UV radiation induces strand breaks and cyclobutane dimer in Bacillus subtilis spore DNA. Appl. Environ. Microbiol. 62: 1977-1983 (2000)
  14. Marquenie D, Michiels CW, Impe JFV, Schrevens E, Nicolai B. Pulsed white light in combination with UV-C and heat to reduce storage rot of strawberry. Postharvest Biol. Technol. 28: 455-461 (2003) https://doi.org/10.1016/S0925-5214(02)00214-4
  15. Gomez-Lopez VM, Devlieghere F, Bonduelle V, Debevere J. Intense light pulses decontamination of minimally processed vegetables and their shelf-life. Int. J. Food Microbiol. 103: 79-89 (2005) https://doi.org/10.1016/j.ijfoodmicro.2004.11.028
  16. Ana YRV, Nicoleta AM, Olga MB, Robert SF. Influence of spectral distribution on bacterial inactivation and quality changes of fresh-cut watermelon treated with intense light pulses. Postharvest Biol. Technol. 69: 32-29 (2012) https://doi.org/10.1016/j.postharvbio.2012.03.002
  17. Gemma OO, Ingrid AA, Olga MB, Robert SF. Effects of pulsed light treatment on quality and antioxdant properties of fresh-cut mushrooms (Agaricus bisporus). Postharvest Biol. Technol. 56: 216-222 (2010) https://doi.org/10.1016/j.postharvbio.2009.12.011
  18. Jeong CH, Bae YI, Shim KH. Physicochemical properties of Hovenia dulcis Thunb. leaf tea. Korean J. Postharvest Sci. Technol. 7: 117-123 (2000)
  19. Andrew LW. Determination of total phenolics. 11.1.1-11.1.8. In: Current Protocol in Food Analytical Chemistry. Wrolstad RE (eds). John Wiley & Sons, Inc., Oxford, UK (2003)
  20. Yu YM, Youn YN, Hua QJ, Cha GH, Lee YH. Biological hazard analysis of paprikas, strawberries and tomatoes in the markets. J. Fd. Hyg. Safety 24: 174-181 (2009)
  21. Calvo L, Torres E. Microbial inactivation of paprika using highpressure $CO_2$. J. Supercrit. Fluid. 52: 134-141 (2010) https://doi.org/10.1016/j.supflu.2009.11.002
  22. Luis A, Jose MN, Jose AFL, Microbial inactivation of Paprika by a high- temperature short-X time treatment. Influence on color properties. J. Agr. Food Chem. 50: 1435-1440 (2002) https://doi.org/10.1021/jf011058f
  23. Manzocco L, Pieve SD, Bertolini A, Bartolomeoli I, Maifreni M, Vianello A, Nicoli MC. Surface decontamination of fresh-cut apple by UV-C light exposure: Effects on structure, colour and sensory properties. Postharvest Biol. Technol. 61: 165-171 (2011) https://doi.org/10.1016/j.postharvbio.2011.03.003
  24. Fava J, Hodara K, Nieto A, Guerrero S, Alzamora SM, Castro MA. Structure (micro, ultra, nano), color and mechanical properties of Vitis labrusca L. (grape berry) fruits treated by hydrogen peroxide, UV-C irradiation and ultrasound. Food Res. Int. 44: 2938-2948 (2011) https://doi.org/10.1016/j.foodres.2011.06.053
  25. Francisco AH, Pedro AR, Perla AG, Alejandro TC, Francisco A. Low UV-C illumination for keeping overall quality of fresh-cut watermelon, Postharvest Biol. Technol. 55: 114-120 (2010) https://doi.org/10.1016/j.postharvbio.2009.09.002
  26. Ana A, Alicia M, Begona B, Francisco TB. Maria I.G. Impact of combined postharvest treatments (UV-C light, gaseous $O_3$, superatmospheric $O_2$ and high $CO_2$) on health promoting compounds and shelf-life of strawberries. Postharvest Biol. Technol. 46: 201-211 (2007) https://doi.org/10.1016/j.postharvbio.2007.05.007
  27. Falguera V, Pagan J, Ibarz A. Effect of UV irradiation on enzymatic activities and physicochemical properties of apple juices from different varieties. LWT-Food Sci. Technol. 44: 115-119 (2011) https://doi.org/10.1016/j.lwt.2010.05.028
  28. Park SY, Chang MS, Choi JH, Kim BS. Effect of a refrigerator with LED on functional composition changes and freshness prolongation of cabbage. Korean J. Food Preserv. 14: 113-118 (2007)
  29. Lee YB. Effect of LED irradiation on quality characteristics at low temperature storage. MS thesis, Ewha University, Seoul, Korea (2013)
  30. Jeong CH, Ko WH, Cho JR, Ahn CG, Shim KH. Chemical components of Korean paprika accroding to cultivars. Korean J. Food Preserv. 13: 43-49 (2006)
  31. Im SJ, Jun JY, Choi YH. Optimization for the extraction process of effective components from paprika. Food Eng. Prog. 11: 31-37 (2007)
  32. Noci, F, Riener J, Walkling-Ribeiro M, Cronin DA, Morgan DJ, Lyng JG. Ultraviolet irradiation and pulsed electric fields (PEF) in a hurdle strategy for the preservation of fresh apple juice. J. Food Eng. 85: 141-146 (2008) https://doi.org/10.1016/j.jfoodeng.2007.07.011
  33. Park JY, Degradation of organic acid using photocatalyst and photo-fenton reaction. MS thesis, Chosun University, Gwangju, Korea (2001)
  34. Cheigh CI, Park MH, Chung MS, Shin JK, Park YS. Comparison of intense pulsed light- and ultraviolet (UVC)- induced cell damage in Listeria monocytogenes and Escherichia coli O157:H7. Food Control 25: 654-659 (2012) https://doi.org/10.1016/j.foodcont.2011.11.032

Cited by

  1. Gaseous Chlorine Dioxide Treatment to Produce High Quality Paprika for Export vol.44, pp.7, 2015, https://doi.org/10.3746/jkfn.2015.44.7.1072
  2. Effects of Combined Chlorine Dioxide Gas Treatment Using Low-Concentration Generating Sticks on the Microbiological Safety and Quality of Paprika during Storage vol.45, pp.4, 2016, https://doi.org/10.3746/jkfn.2016.45.4.619
  3. Contamination level of commercialized pepper and sterilization effect by intense pulsed light in batch system vol.48, pp.5, 2016, https://doi.org/10.9721/KJFST.2016.48.5.525
  4. Sterilization of Rapeseed Sprouts by Intense Pulsed Light Treatment vol.48, pp.1, 2016, https://doi.org/10.9721/KJFST.2016.48.1.36