• 제목/요약/키워드: intelligent control system

Search Result 2,865, Processing Time 0.03 seconds

Complex Process Control using the Adaptive Neural Fuzzy Inference System

  • Kim, Dong-Hwa
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.351-351
    • /
    • 2000
  • Since the heat exchange system, such as the boiler of power plant, gas turbine, and radiator require an application of intelligent control system for a high rate heat efficiency and the efficiency of these systems is depended on the control methods it is important for operator to understand control system of these systems and intelligent control technologies. In order to properly apply control equipment and intelligent technology to these process control systems, it is necessary to understand fuzzy, neural network, genetics, and immune as well as the basic aspects and operation principle of the process that relate control, interrelationships of the process characteristics, and the dynamics that are involved. Generally, since PID controllers are used in these systems it is difficult far engineer to understand both the complex dynamics and the intelligent control method. In this paper, we design an effective experimental system for the intelligent control education and analyze its characteristics through experimental system and each intelligent method to study how they can learn intelligent control system by experiments.

  • PDF

Neuro-Fuzzy Control of Inverted Pendulum System for Intelligent Control Education

  • Lee, Geun-Hyung;Jung, Seul
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.9 no.4
    • /
    • pp.309-314
    • /
    • 2009
  • This paper presents implementation of the adaptive neuro-fuzzy control method. Control performance of the adaptive neuro-fuzzy control method for a popular inverted pendulum system is evaluated. The inverted pendulum system is designed and built as an education kit for educational purpose for engineering students. The educational kit is specially used for intelligent control education. Control purpose is to satisfy balancing angle and desired trajectory tracking performance. The adaptive neuro-fuzzy controller has the Takagi-Sugeno(T-S) fuzzy structure. Back-propagation algorithm is used for updating weights in the fuzzy control. Control performances of the inverted pendulum system by PID control method and the adaptive neuro-fuzzy control method are compared. Control hardware of a DSP 2812 board is used to achieve the real-time control performance. Experimental studies are conducted to show successful control performances of the inverted pendulum system by the adaptive neuro-fuzzy control method.

Design of Intelligent Transportation Control System Based on Blockchain Technology

  • Xia, Wei
    • Journal of Information Processing Systems
    • /
    • v.18 no.6
    • /
    • pp.763-769
    • /
    • 2022
  • Transportation allocation requires information such as storage location and order information. In order to guarantee the safe transmission and real-time sharing of information in all links, an intelligent transportation control system based on blockchain technology is designed. Firstly, the technical architecture of intelligent transportation information traceability blockchain and the overall architecture of intelligent transportation control system were designed. Secondly, the transportation management demand module and storage demand management module were designed, and the control process of each module was given. Then, the type of intelligent transportation vehicle was defined, the objective function of intelligent transportation control was designed, and the objective function of intelligent transportation control was constructed. Finally, the intelligent transportation control was realized by genetic algorithm. It was found that when the transportation order volume was 50×103, and the CPU occupancy of the designed system was only 11.8%. The reliability attenuation of the code deletion scheme was lower, indicating better performance of the designed system.

Implementation and Experiment of Neural Network Controllers for Intelligent Control System Education

  • Lee, Geun-Hyeong;Noh, Jin-Seok;Jung, Seul
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.7 no.4
    • /
    • pp.267-273
    • /
    • 2007
  • This paper presents the implementation of an educational kit for intelligent system control education. Neural network control algorithms are presented and control hardware is embedded to control the inverted pendulum system. The RBF network and the MLP network are implemented and embedded on the DSP 2812 chip and other necessary functions are embedded on an FPGA chip. Experimental studies are conducted to compare performances of two neural control methods. The intelligent control educational kit(ICEK) is implemented with the inverted pendulum system whose movements of the cart is limited by space. Experimental results show that the neural controllers can manage to control both the angle and the position of the inverted pendulum systems within a limited distance. Performances of the RCT and the FEL control method are compared as well.

A Study on Intelligent Decentralized Active Suspension Control System with Descriptor LMI Design Method

  • Park, Jung-Hyen
    • Journal of information and communication convergence engineering
    • /
    • v.6 no.2
    • /
    • pp.198-203
    • /
    • 2008
  • An Intelligent optimal control system design algorithm in active suspension equipment adopting linear matrix inequalities control system design theory with representing by descriptor system form is presented. The validity of the linear matrix inequalities intelligent decentralized control system design with representing by descriptor system form in active suspension system through the numerical examples is also investigated.

Experimental Studies of Swing Up and Balancing Control of an Inverted Pendulum System Using Intelligent Algorithms Aimed at Advanced Control Education

  • Ahn, Jaekook;Jung, Seul
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.14 no.3
    • /
    • pp.200-208
    • /
    • 2014
  • This paper presents the control of an inverted pendulum system using intelligent algorithms, such as fuzzy logic and neural networks, for advanced control education. The swing up balancing control of the inverted pendulum system was performed using fuzzy logic. Because the switching time from swing to standing motion is important for successful balancing, the fuzzy control method was employed to regulate the energy associated with the angular velocity required for the pendulum to be in an upright position. When the inverted pendulum arrived within a range of angles found experimentally, the control was switched from fuzzy to proportional-integral-derivative control to balance the inverted pendulum. When the pendulum was balancing, a joystick was used to command the desired position for the pendulum to follow. Experimental results demonstrated the performance of the two intelligent control methods.

A study on the Intelligent Voltage Control System (전력계통의 지능형 전압제어시스템에 관한 연구)

  • Lee, Heung-Jae;Yu, Won-Kun;Wang, In-Soo;Kang, Hyun-Jae;Shin, Jung-Hoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.7
    • /
    • pp.944-949
    • /
    • 2012
  • As modern power systems become large and complicated, the automated voltage and reactive power control system is required in most developed countries due to the recent amazing progress of computer net works and information thechnology. So far the voltage control has been depend on human operator in korean power system. This paper presents an intelligent voltage control system based on sensitivity analysis and artificial intelligence technology. Detailed state space modeling technique is discussed and a new performance index is proposed to speed up the searching performance of the expert system. As the searching strategy is very important factor of the speed of expert system the least first search algorithm is applied using this performance index. The intelligent voltage control system is applied to the Jeju power system. As a result, case studies showed a promissing application of the intelligent voltage control system.

CONTROL CHARACTERISTICS OF SINGLE-SWITCH, THREE-PHASE BUCK RECTIFIERS

  • Song, Joong-Ho;Kim, Yong-Duck;Lee, Dong-Yun;Choy, Ick;Choi, Joo-Yeop
    • Proceedings of the KIPE Conference
    • /
    • 1998.10a
    • /
    • pp.658-662
    • /
    • 1998
  • A pulse frequency modulation control method for single-switch three-phase buck rectifiers is comprehensively studied in this paper. The proposed pulse frequency control method leads the three-phase buck rectifier to high performance system that can draw the nearly sinusoidal imput-line currents. The simulated and experimental results demonstrate that the system provides low total harmonic distortion of the input-line currents, high-power factor, and good output voltage regulation.

  • PDF

Internet Web-Based Remote Control System Using SNMP (인터넷 웹 기반 환경에서의 원격 제어 시스템)

  • Choi, Ju-Yeop;Oh, Young-Eun;Jeon, Ho-Seok;Song, Joong-Ho;Choy, Ick
    • Proceedings of the KIEE Conference
    • /
    • 1999.07g
    • /
    • pp.3159-3161
    • /
    • 1999
  • This paper aims at developing remote control system to control and monitor distributed various devices through internet or information communication network. SNMP (Simple Network Management Protocol) and UPS (Uninterruptible Power Supply) are adopted for network management protocol and applied device, respectively. For controlling and monitoring distributed devices in real-time, Java-environment software is constructed. Also, general-use interface controller between network device and applied device is proposed. Finally, serial communication such as RS-232 and RS-485 is used between controller and applied device.

  • PDF

Internet Web-Based Rectifier Remote Control System Using SNMP (인터넷 웹 기반 환경에서의 정류기용 원격 제어 시스템)

  • Choi, Ju-Yeop;Oh, Young-Eun;Jeon, Ho-Suk;Song, Joong-Ho;Choi, Ik
    • Proceedings of the KIPE Conference
    • /
    • 1999.07a
    • /
    • pp.88-92
    • /
    • 1999
  • This paper aims at developing remote contro system to control and monitor distributed various devices through internet or information communication network. SNMP (Simple Network Management Protocol) and rectifier operated in a row are adopted for network management protocol and applied device, respectively. For controlling and monitoring distributed devices in real-time java-environment software is constructed. Also general-use interface controller between network device and applied device is proposed. Finally, seria communication such as RS-232 and RS-485 is used between controller and applied device.

  • PDF