• Title/Summary/Keyword: intelligent classification

Search Result 915, Processing Time 0.025 seconds

The Design of GA-based TSK Fuzzy Classifier and Its application (GA기반 TSK 퍼지 분류기의 설계 및 응용)

  • 곽근창;김승석;유정웅;전명근
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2001.12a
    • /
    • pp.233-236
    • /
    • 2001
  • In this paper, we propose a TSK-type fuzzy classifier using PCA(Principal Component Analysis), FCM(Fuzzy C-Means) clustering and hybrid GA(genetic algorithm). First, input data is transformed to reduce correlation among the data components by PCA. FCM clustering is applied to obtain a initial TSK-type fuzzy classifier. Parameter identification is performed by AGA(Adaptive Genetic Algorithm) and RLSE(Recursive Least Square Estimate). we applied the proposed method to Iris data classification problems and obtained a better performance than previous works.

  • PDF

The Method of Classification Considering Rule Weights in the Interval-Valued Fuzzy Sets (구간값 퍼지집합에서 규칙 가중치를 고려한 분류방법)

  • Son Chang-Sik;Jeong Hwan-Muk
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2006.05a
    • /
    • pp.85-89
    • /
    • 2006
  • 구간값 퍼지집합은 일반적인 퍼지집합보다 언어적인 의사결정 절차에서 매핑의 정확성과 계산의 효율성이 뛰어나고, 규칙의 가중치는 패턴 분류문제에서 분류 경계를 효율적으로 조정할 수 있다는 장점을 가지고 있다. 따라서 본 논문에서는 퍼지규칙 기반 분류방법을 구간값 퍼지규칙 기반 분류방법으로 확장하고 규칙의 가중치를 고려한 분류방법을 제안한다. 모의실험에서는 일반 퍼지집합에서 규칙 가중치를 고려한 분류방법과 구간값 퍼지집합에서 규칙 가중치를 고려한 분류방법을 비교하였다.

  • PDF

Tolerance Rough Set Approaches in the Classification of Multi-Attribute Data

  • Lee, Jaeik;Suh Kapsun;Suh, Yong-Soo
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1997.10a
    • /
    • pp.419-423
    • /
    • 1997
  • This paper is concerned about the classification of objects together with muti-attributes such as remote sensing image data by using tolerance rough set. To produce more reliable relations from given attributes in the data, we define new similarity measures by using scaling. Our Method will be applied to classify multi-spectral image data.

  • PDF

Evolution of the Behavioral Knowledge for a Virtual Robot

  • Hwang Su-Chul;Cho Kyung-Dal
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.5 no.4
    • /
    • pp.302-309
    • /
    • 2005
  • We have studied a model and application that evolves the behavioral knowledge of a virtual robot. The knowledge is represented in classification rules and a neural network, and is learned by a genetic algorithm. The model consists of a virtual robot with behavior knowledge, an environment that it moves in, and an evolution performer that includes a genetic algorithm. We have also applied our model to an environment where the robots gather food into a nest. When comparing our model with the conventional method on various test cases, our model showed superior overall learning.

A Study on the Face Recognition Using PCA

  • Lee Joon-Tark;Kueh Lee Hui
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2006.11a
    • /
    • pp.305-309
    • /
    • 2006
  • In this paper, a face recognition algorithm system using Principle Component Analysis is proposed. The algorithm recognized a person by comparing characteristics (features) of the face to those of known individuals which is a face database of Intelligence Control Laboratory(ICONL). Experiments were simulated in order to demonstrate the performance of this algorithm due to face recognition which presented for the classification of face and non-face and the classification of known and unknown.

  • PDF

Soft-Remote-Control System based on EMG Signals for the Intelligent Sweet Home

  • Song, Jae-Hoon;Han, Jeong-Su;Pak, Ji-Woo;Kim, Dae-Jin;Jung, Jin-Woo;Bien, Z. Zenn;Lee, He-Young
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1163-1168
    • /
    • 2005
  • This paper proposes a soft-remote-control (soft-remocon) system based on EMG signals for the Intelligent Sweet Home. The proposed system is applied to Intelligent Sweet Home which was developed to help the independence living of the elderly and physically handicapped individuals. The goal of proposed system is to control home-installed electronic devices such as TV, air-conditioner, curtain and lamp in Intelligent Sweet Home using EMG signals. Features such as VAR and DAMV having good separability performance are selected for pattern classification. FMMNN is adopted as a pattern classifier. Classification results are allowed to a developed remote control module and then corresponding infrared pulses can operate home-installed electronic devices. We concluded that EMG as an input interface for home-installed electronic devices in Intelligent Sweet Home.

  • PDF

Comparison Between Optimal Features of Korean and Chinese for Text Classification (한중 자동 문서분류를 위한 최적 자질어 비교)

  • Ren, Mei-Ying;Kang, Sinjae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.25 no.4
    • /
    • pp.386-391
    • /
    • 2015
  • This paper proposed the optimal attributes for text classification based on Korean and Chinese linguistic features. The experiments committed to discover which is the best feature among n-grams which is known as language independent, morphemes that have language dependency and some other feature sets consisted with n-grams and morphemes showed best results. This paper used SVM classifier and Internet news for text classification. As a result, bi-gram was the best feature in Korean text categorization with the highest F1-Measure of 87.07%, and for Chinese document classification, 'uni-gram+noun+verb+adjective+idiom', which is the combined feature set, showed the best performance with the highest F1-Measure of 82.79%.

Cloud-Type Classification by Two-Layered Fuzzy Logic

  • Kim, Kwang Baek
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.13 no.1
    • /
    • pp.67-72
    • /
    • 2013
  • Cloud detection and analysis from satellite images has been a topic of research in many atmospheric and environmental studies; however, it still is a challenging task for many reasons. In this paper, we propose a new method for cloud-type classification using fuzzy logic. Knowing that visible-light images of clouds contain thickness related information, while infrared images haves height-related information, we propose a two-layered fuzzy logic based on the input source to provide us with a relatively clear-cut threshold in classification. Traditional noise-removal methods that use reflection/release characteristics of infrared images often produce false positive cloud areas, such as fog thereby it negatively affecting the classification accuracy. In this study, we used the color information from source images to extract the region of interest while avoiding false positives. The structure of fuzzy inference was also changed, because we utilized three types of source images: visible-light, infrared, and near-infrared images. When a cloud appears in both the visible-light image and the infrared image, the fuzzy membership function has a different form. Therefore we designed two sets of fuzzy inference rules and related classification rules. In our experiment, the proposed method was verified to be efficient and more accurate than the previous fuzzy logic attempt that used infrared image features.

Import Vector Voting Model for Multi-pattern Classification (다중 패턴 분류를 위한 Import Vector Voting 모델)

  • Choi, Jun-Hyeog;Kim, Dae-Su;Rim, Kee-Wook
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.13 no.6
    • /
    • pp.655-660
    • /
    • 2003
  • In general, Support Vector Machine has a good performance in binary classification, but it has the limitation on multi-pattern classification. So, we proposed an Import Vector Voting model for two or more labels classification. This model applied kernel bagging strategy to Import Vector Machine by Zhu. The proposed model used a voting strategy which averaged optimal kernel function from many kernel functions. In experiments, not only binary but multi-pattern classification problems, our proposed Import Vector Voting model showed good performance for given machine learning data.

An Adaptive Classification Model Using Incremental Training Fuzzy Neural Networks (점증적 학습 퍼지 신경망을 이용한 적응 분류 모델)

  • Rhee, Hyun-Sook
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.16 no.6
    • /
    • pp.736-741
    • /
    • 2006
  • The design of a classification system generally involves data acquisition module, learning module and decision module, considering their functions and it is often an important component of intelligent systems. The learning module provides a priori information and it has been playing a key role for the classification. The conventional learning techniques for classification are based on a winner take all fashion which does not reflect the description of real data where boundarues might be fuzzy Moreover they need all data for the learning of its problem domain. Generally, in many practical applications, it is not possible to prepare them at a time. In this paper, we design an adaptive classification model using incremental training fuzzy neural networks, FNN-I. To have a more useful information, it introduces the representation and membership degree by fuzzy theory. And it provides an incremental learning algorithm for continuously gathered data. We present tie experimental results on computer virus data. They show that the proposed system can learn incrementally and classify new viruses effectively.