• Title/Summary/Keyword: intelligent classification

Search Result 915, Processing Time 0.022 seconds

The Color Classification and Robot Path Planning using Cellular Neural Network (셀룰라 신경회로망을 이용한 컬러구분과 로봇경로 계획)

  • Shin, Yoon-Cheol;Lee, Ja-Yong;Kang, Hoon
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2001.05a
    • /
    • pp.266-269
    • /
    • 2001
  • 이미지와 비디오신호 처리는 영상인식에 있어 중요한 요소이다. 셀룰라 신경회로망은 영상과 관련된 분야에서 많이 사용되고 있다. 그 응용분야로서 본 논문에서는 로봇축구에 적용하기 위하여 8색의 컬러구분을 통한 축구로봇의 인식과, 또한 경기장의 격자구조의 분할을 통한 셀간의 이동을 통하여 간단한 경로 이동과 급변하는 환경의 변화에 적응하는 시스템을 구현한다. CNN을 이용한 영상처리에서는 각 셀을 화면상의 각 화소에 대응하고, 셀의 출력의 값을 화소의 값으로 정한다. CNN을 이용한 경로계획에서는 각 셀이 격자구조 경기장의 한 부분이 되고, 정의된 출력의 셀이 로봇이 이동할 목표가 된다.

  • PDF

Automatic Categorization of Real World FAQs Using Hierarchical Document Clustering (계층적 문서 클러스터링을 이용한 실세계 질의 메일의 자동 분류)

  • 류중원;조성배
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2001.05a
    • /
    • pp.187-190
    • /
    • 2001
  • Due to the recent proliferation of the internet, it is broadly granted that the necessity of the automatic document categorization has been on the rise. Since it is a heavy time-consuming work and takes too much manpower to process and classify manually, we need a system that categorizes them automatically as their contents. In this paper, we propose the automatic E-mail response system that is based on 2 hierarchical document clustering methods. One is to get the final result from the classifier trained seperatly within each class, after clustering the whole documents into 3 groups so that the first classifier categorize the input documents as the corresponding group. The other method is that the system classifies the most distinct classes first as their similarity, successively. Neural networks have been adopted as classifiers, we have used dendrograms to show the hierarchical aspect of similarities between classes. The comparison among the performances of hierarchical and non-hierarchical classifiers tells us clustering methods have provided the classification efficiency.

  • PDF

Fuzzy Inference in RDB using Fuzzy Classification and Fuzzy Inference Rules

  • Kim Jin Sung
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2005.04a
    • /
    • pp.153-156
    • /
    • 2005
  • In this paper, a framework for implementing UFIS (Unified Fuzzy rule-based knowledge Inference System) is presented. First, fuzzy clustering and fuzzy rules deal with the presence of the knowledge in DB (DataBase) and its value is presented with a value between 0 and 1. Second, RDB (Relational DB) and SQL queries provide more flexible functionality fur knowledge management than the conventional non-fuzzy knowledge management systems. Therefore, the obtained fuzzy rules offer the user additional information to be added to the query with the purpose of guiding the search and improving the retrieval in knowledge base and/ or rule base. The framework can be used as DM (Data Mining) and ES (Expert Systems) development and easily integrated with conventional KMS (Knowledge Management Systems) and ES.

  • PDF

A Personal Credit Estimate Algorithm Using Artificial Neural Network (인공신경망을 이용한 개인 신용평가 알고리즘)

  • Lim Sung-Bin;Choi Woo-Kyung;Kim Sung-Hyun;Kim Yong-Min;Jeon Hong-Tae
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2005.04a
    • /
    • pp.293-296
    • /
    • 2005
  • 최근 우리나라는 가계신용의 급신장과 신용불량의 급증 등으로 개인 신용부문이 금융기관의 건전성 유지에 부정적인 영향을 미치고 있다. 이러한 잠재적 문제를 사전에 방지하기 위해 금융기관 등에서는 개인 신용평가에 대한 수요가 커지고 있는 실정이다. 주어진 데이터로부터의 반복적인 학습 과정을 거쳐 패턴을 분류하고 또한 모델과 학습 방법에 따라 입력변수와 목적변수의 속성이 연속형이나 이산형인 경우를 모두 다룰 수 있는 신경망 모델은 개개인의 다양하고 복잡한 데이터를 입력변수로 받아서 신용등급을 나누는데 우수한 능력을 보여줄 수 있다. 본 논문에서는 신경망 모델을 이용해 개인의 신용등급을 객관적이고 일률적으로 평가해서 등급을 나누어주는 알고리즘을 제안하고자 한다.

  • PDF

Evolvable Cellular Classifiers for Pattern Recognition (패턴 인식을 위한 진화 셀룰라 분류기)

  • Ju, Jae-ho;Shin, Yoon-cheol;Hoon Kang
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2000.05a
    • /
    • pp.236-240
    • /
    • 2000
  • A cellular automaton is well-known for self-organizing and dynamic behaviors in the field of artificial life. This paper addresses a new neuronic architecture called an evolvable cellular classifier which evolves with the genetic rules (chromosomes) in the non-uniform cellular automata. An evolvable cellular classifier is primarily based on cellular programing, but its mechanism is simpler because it utilizes only mutations for the main genetic operators and resembles the Hopfield network. Therefore, the desirable hi t-patterns could be obtained through evolutionary processes for just one individual agent. As a result, an evolvable hardware is derived which is applicable to classification of bit-string information.

  • PDF

The Software Classification Criteria based on the Tolerant Rough Set (허용적 러프집합에 기반한 소프트웨어 분류기준)

  • 김상용;최완규;김영식;이성주
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2000.05a
    • /
    • pp.307-310
    • /
    • 2000
  • 소프트웨어의 측정값에 근거하여 소프트웨어 품질에 관한 의사결정을 할 때, 동치관계의 요구조건인 추이적(transitive) 특성이 항상 만족되는 것은 아니다. 순환수(cyclomatic number)가 거의 비슷한 프로그램에서, 하나는 "구조적인" 프로그램 범주에 속하고 또 다른 하나는 비구조적인 프로그램 범주에 속한다고 명확히 분류 할 수 있는가하는 점이다. 따라서, 본 연구에서는 동치관계보다는 허용적 관계를 만족하는 허용적 러프집합에 근거한 소프트웨어 분류 기준 제시하고자 한다. 분류기준을 생성하기 위한 실험 데이터 집합을 수집하고, 집합 내의 각 원소에 관한 허용적 클래스들을 생성한 후, 각 허용적 클래스들의 중심값을 클러스터링하여 분류기준을 생성한다. 생성된 분류기준을 또 다른 실험 집합에 적용하여 비교 분석하여 생성된 분류기준이 타당함을 보여준다.

  • PDF

Design of Purchasing Pattern Classification System Using Nural Network and Multiple-Level Association Rules (신경망과 다단계 연관규칙을 이용한 구매 패턴 분류 시스템의 설계)

  • Lee, Jong-Min;Jung, Hong
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2000.05a
    • /
    • pp.203-206
    • /
    • 2000
  • 신경망을 이용해 고객집단을 분류하고 고객의 특성에 따라 세분화된 고객들에 대해 다단계 연관규칙을 적용해서 고객의 상품 구매패턴을 찾아 줌으로써 마케팅 전략 결정을 지원하는 구매패턴분류 시스템을 설계한다. 고객분류를 위한 신경망 시스템은 다층 퍼셉트론에 역전파 알고리즘을 이용한다. 주소, 구매금액, 구매횟수, 고객 구분, 상긴 등과 같은 고객정보를 입력층에 입력변수로 지정하고, 이에 따른 우량/일반고객을 출력변수로 지정한 후 신경망을 학습시키면, 실제의 우량/일반의 간과 예측되는 우량/일반의 값의 차이론 최소화시키면서 모형을 형성시켜 나가게 된다. 구매패턴 분류 시스템은 다단계 연관규칙을 이용한다. 고객분류 서브시스템을 통해 고객집단이 세분화되면 각각의 고객집단에 대해 TID와 품목 트랜잭션을 입력으로 cumulate 알고리즘과 개념계층을 이용해 일반화 과정을 수행하면서 빈발 항목을 찾게 되고 이론 근거로 항목간의 연관규칙을 찾아내게 된다.

  • PDF

The Development of a New Distributed Multiobjective Evolutionary Algorithm with an Inherited Age Concept (계승적 나이개념을 가진 다목적 진화알고리즘 개발)

  • 강영훈;변증남
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.11 no.8
    • /
    • pp.689-694
    • /
    • 2001
  • Recently, several promising multiobjective evolutionary algorithm such as SPEA. NSGA-II, PESA, and SPEA2 have been developed. In this paper, we also propose a new multiobjective evolutionary algorithm that compares to them. In the algorithm proposed in this paper, we introduce a novel concept, “inherited age” and total algorithm is executed based on the inherited age concept. Also, we propose a new sharing algorithm, called objective classication sharing algorithm(OCSA) that can preserve the diversity of the population. We will show the superior performance of the proposed algorithm by comparing the proposed algorithm with other promising algorithms for the test functions.

  • PDF

On a Novel Way of Processing Data that Uses Fuzzy Sets for Later Use in Rule-Based Regression and Pattern Classification

  • Mendel, Jerry M.
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.14 no.1
    • /
    • pp.1-7
    • /
    • 2014
  • This paper presents a novel method for simultaneously and automatically choosing the nonlinear structures of regressors or discriminant functions, as well as the number of terms to include in a rule-based regression model or pattern classifier. Variables are first partitioned into subsets each of which has a linguistic term (called a causal condition) associated with it; fuzzy sets are used to model the terms. Candidate interconnections (causal combinations) of either a term or its complement are formed, where the connecting word is AND which is modeled using the minimum operation. The data establishes which of the candidate causal combinations survive. A novel theoretical result leads to an exponential speedup in establishing this.

An Improvement of AdaBoost using Boundary Classifier

  • Lee, Wonju;Cheon, Minkyu;Hyun, Chang-Ho;Park, Mignon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.23 no.2
    • /
    • pp.166-171
    • /
    • 2013
  • The method proposed in this paper can improve the performance of the Boosting algorithm in machine learning. The proposed Boundary AdaBoost algorithm can make up for the weak points of Normal binary classifier using threshold boundary concepts. The new proposed boundary can be located near the threshold of the binary classifier. The proposed algorithm improves classification in areas where Normal binary classifier is weak. Thus, the optimal boundary final classifier can decrease error rates classified with more reasonable features. Finally, this paper derives the new algorithm's optimal solution, and it demonstrates how classifier accuracy can be improved using the proposed Boundary AdaBoost in a simulation experiment of pedestrian detection using 10-fold cross validation.