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Abstract

This paper presents a novel method for simultaneously and automatically choosing the nonlin-
ear structures of regressors or discriminant functions, as well as the number of terms to include
in a rule-based regression model or pattern classifier. Variables are first partitioned into subsets
each of which has a linguistic term (called a causal condition) associated with it; fuzzy sets are
used to model the terms. Candidate interconnections (causal combinations) of either a term or
its complement are formed, where the connecting word is AND which is modeled using the
minimum operation. The data establishes which of the candidate causal combinations survive.
A novel theoretical result leads to an exponential speedup in establishing this.
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1. Introduction

Regression and pattern classification are very widely used in many fields and applications.1

Both face four major challenges: 1) choosing the variables/features; 2) choosing the nonlinear
structure of the regressors/discriminant functions; 3) choosing how many terms to include in
the regression model/pattern classifier; and, 4) optimizing the parameters that complete the
description of the regression model/pattern classifier.

For Challenge 1, how to choose the variables/features is crucial to the success of any
regression model/pattern classifier. In this paper we assume that the user has established the
variables that affect the outcome, using methods already available for doing this. For Challenge
4, there are a multitude of methods for optimizing parameters, ranging from classical steepest
descent (back-propagation) to a plethora of evolutionary computing methods (e.g., simulated
annealing, GA, PS0, QPSO, ant colony, etc. [4]), and we assume that the user has decided on
which one of these to use. Our focus in this paper is on Challenges 2 and 3.

For Challenge 2, in real-world applications the nonlinear structures of the regressors/
discriminant functions are usually not known ahead of time, and are therefore chosen either2 as
products of the variables (e.g., two at a time, three at a time, etc.), or in other more complicated

1A search in Google, on January 22 2014, under regression listed about 20,800,000 results and under pattern
classification listed about 19,900,000 results, so, it is beyond the realm of this paper to provide a complete list of
articles that have been written about regression and pattern classification. Instead, we refer the readers to, e.g., [1-3].

2Linear terms may also be included.
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ways (e.g., trigonometric-, exponential-, logarithmic-functions,
etc.). Sometimes knowledge about the application provides
justifications for the choices made for the nonlinear terms; how-
ever, often one does not have such knowledge, and a lot of time
is spent, using trial and error, trying to establish the nonlinear
dependencies. For Challenge 3, how to determine how many
terms to include in the regression model/pattern classifier is
also usually done by trial and error, and this can be very tedious
to do. In this paper we present a novel method that chooses
the nonlinear structure of the regressors/discriminant functions
as well as the number of terms to include in the regression
model/pattern classifier simultaneously and automatically. This
is accomplished using a novel way of pre-processing the given
data.

The rest of this paper is organized as follows: Section 2
explains how data can be treated as cases; Section 3 explains
how each variable must be granulated; Section 4 describes
the Takagi-Sugeno-Kang (TSK) rules that are used for regres-
sion/pattern classification; Section 5 presents the main results
of this paper, a novel way to simultaneously determine the non-
linear structure of the regressors/discriminant functions and
the number of terms to include in the regression model/pattern
classifier; Section 6 provides some discussions; and, Section7
draws conclusions and indicates some directions for further
research.

2. Data Treated as Cases

A data pair is denoted (x(t), y(t)) where x=col(x1, x2, ..., xp),
xi is the ith variable/feature and y(t) is the output for that x(t).
As is commonly done in the social sciences [5, 6], each data pair
is treated as a “case” and index t denotes a data case. Treating
data as cases is motivated by a method called fuzzy set qualita-
tive comparative analysis (fsQCA), which was developed by the
prominent social scientist Ragin [5, 6], and has been thoroughly
quantified by Mendel and Korjani [7, 8].

Note that there may or may not be a natural ordering of
the cases over t. In multi-variable function approximation
or pattern classification applications the data have no natural
ordering; but in time-series forecasting applications the data
cases have a natural temporal ordering. We assume that N data
pairs are available, and refer to the collection of these data pairs
as SCases, where SCases = {(x(t), y(t))}Nt=1.

3. Preprocessing

To begin, each of the p variables is granulated [9] into a fixed
number of terms. Our suggested approach is to begin with only
two terms per variable, design the regression model/pattern
classifier, and determine if acceptable performance is obtained.
If it has not, then increase the number of terms to three (then
four, etc.) and repeat this process, stopping when acceptable
performance has been obtained. Due to space limitations, we
explain our preprocessing only for two terms per variable. Its
extensions to more than two terms is straightforward.

For illustrative purposes, we shall call the two terms high
(H) and low (L). Each variable xi (i = 1, ..., p), xi ∈ R+ (or
xi ∈ R), is mapped into the membership functions (MFs) of two
type-1 fuzzy sets, one each for high and low. There are many
different ways to do this, e.g. choose each MF as a prescribed
two-parameter sigmoidal or piecewise-linear function.

In order to use the construction that is described in Section
5, it is required that the two MFs must be the complement of
one another. This is easily achieved by using fuzzy c-means
(FCM) for two clusters [10], (or linguistically modified FCM
[LM-FCM] [11]), because it is well known that the MFs for the
two FCM clusters are constrained so that one is the complement
of the other.

As a result of this preprocessing step, the MFs µLi
(xi) and

µHi
(xi) = 1− µLi

(xi) (i = 1, ..., p) will have been obtained.
Note that, if independent MFs are used for Li andHi (for which
µHi(xi) 6= 1−µLi(xi)), then our Section 5 method will use Li

and Hi as well as their complements—four quantities. When,
however, µHi

(xi) = 1− µLi
(xi) the four quantities reduce to

two.

4. Rules

Our rules for a rule-based regression model or classifier have
the following TSK structure [12]:

Sv : IFx1 is Av
1 ... and xp is Av

p,

THEN yv(x)=βv, v = 1, ..., RS

(1)

For the rule-based regression model, the βv play the role of
the regression coefficients which are determined by means of
optimizing a regression objective function (e.g., minimizing a
root mean square error), whereas for a binary pattern classifier
the βv are either +1 or -1, depending upon which class the rule
is for. Regardless of whether Eq. (1) is used for regression
or pattern classification, observe that the antecedent structure
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(x1 is Av
1 ... and xp is Av

p) and the number of rules (RS) must
be specified, after which it is straightforward to convert Eq. (1)
into a so-called fuzzy basis function expansion [12, 13]. It is the
mathematics of this conversion that establishes the nonlinear na-
tures of the regressors/discriminant functions (Challenge 2); but
this requires determining RS and the antecedent structure. We
show how to determine these simultaneously and automatically
in the next section.

5. Establish Antecedents of Rules and the Num-
ber of Rules

The (compound) antecedent of each rule contains one linguistic
term or its complement for each of the p variables, and each
of these linguistic terms is combined with the others by using
the word “and” (e.g., A1 and A2 and ... and Ap). We refer
to this interconnection as a causal combination3. Note that
in a traditional if-then rule the antecedents only use the terms
and not their complements. In our approach (as in fsQCA),
protection about being wrong for postulating a term is achieved
by considering each term as well as its complement.

To begin, 2p candidate causal combinations (the 2 is due to
both the term and its complement4) are conceptually postulated
(we will show below that these causal combinations do not
actually have to be enumerated). If, e.g., p = 6 there would be
64 candidate causal combinations, or, if p = 10, there would
be 1,024 candidate causal combinations.

One does not know ahead of time which of the 2p candidate
causal combinations should actually be used as a compound
antecedent in a rule. Our approach prunes this large collection
by using the MFs that were determined in Section 3, as well
as the MF for “A1 and A2 and ... and Ap” (obtained using
fuzzy set mathematics) and a simple test. The results of doing
this are called Rs surviving causal combinations.

Let SF be the collection of the following 2p candidate causal
combinations, Fj (j = 1, ..., 2p and i = 1, ..., p):

SF = {F1, ..., F2p}
Fj ≡ Aj

1 ∧A
j
2 ∧ ... ∧A

j
i ∧ ... ∧Aj

p

Aj
i = Ci or ci

(2)

where ∧ denotes conjunction (the “and” operator) and is mod-
eled using minimum and (using Ragin’s [5] notation) ci denotes
the complement of Ci. The RS surviving causal combinations

3The term “causal combination” is borrowed from fsQCA (e.g., [5-7]).
4When the two terms are not complements of each other, then there are 22p

candidate causal combinations.

are found from all of the 2p candidate causal combinations by
keeping only those causal combinations whose MF > 0.5 for
at least f cases, where f is a threshold that has to be specified
ahead of time5. A brute force way to do this is to create a table
in which there are N rows, one for each case, and 2p columns,
one for each of the causal combinations. The entries into this
table are µFj

(t) and there will be N2p such entries. Such a
table is called a truth table by Ragin [4, 5]. One then searches
through this very large table and keeps only those causal com-
binations whose MF entries are > 0.5. If f = 1 then all such
causal combinations, removing duplications, become the set of
RS surviving causal combinations. It is very easy for N2p to
become very large6 and so this brute force way to carry out this
procedure is impractical.

Ragin [5] observed the following in an example with four
causal conditions: “. . . each case can have (at most) only a
single membership score greater than 0.5 in the logical possible
combinations from a given set of causal conditions (i.e., in the
candidate causal combinations).” This somewhat surprising
result is true in general and in [8] the following theorem that
locates the one causal combination for each case whose MF >
0.5 was presented:

Theorem 5.1 (min-max theorem). [8]: given p causal condi-
tions, C1, C2,. . . , Cp and their respective complements, c1,
c2, . . . , cp. Consider the 2p candidate causal combinations
(j = 1, ..., 2p) Fj = Aj

1 ∧ A
j
2 ∧ ... ∧ Aj

p where Aj
i = Ci or ci

and i = 1, ..., p.

Proof. Let

µFj
(t) = min{µAj

1
(t), µAj

2
(t), ..., µAj

p
(t)}, t = 1, 2, ..., N

(3)
Then for each t (case) there is only one j, j ∗ (t), for which
µFj∗(t)(t) > 0.5 and µFj∗(t)(t) can be computed as:

µFj∗(t)(t) = min
{
max

(
µD
C1

(t), µD
c1(t)

)
,

. . . ,max
(
µD
Cp

(t), µD
cp(t)

)} (4)

where µD
ei(x) = µci(ξi(x)). Fj∗(t)(t) is determined from the

5Each of the 2k candidate causal combinations can be interpreted as a corner
in a 2k-dimensional vector space [3]. Choosing the surviving causal combi-
nations as just explained is interpreted as keeping the adequately represented
causal combinations that are closer to corners and not the ones that are farther
away from corners.

6If each variable is described by nc independent terms, then N2p →
N2ncp. In this situation, N2ncp can easily become enormous, e.g. if p = 6
and nc = 3, then 2ncp = 218 , or, if p = 10 and nc = 3, then 2ncp = 230.
Even for nc = 3, the brute force approach way to carry out this procedure is
totally impractical or impossible.
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right-hand side of Eq. (4), as:

Fj∗(t)(t) = argmax
(
µD
C1

(t), µD
c1(t)

)
. . . argmax

(
µD
Cp

(t), µD
cp(t)

)
, A

j∗(t)
1 ∧ ... ∧Aj∗(t)

p

(5)

In Eq. (5), argmax
(
µD
Ci
(t), µD

ci(t)
)

denotes the winner of
max

(
µD
Ci
(t), µD

ci(t)
)
, namely Ci or ci.

A proof of this theorem is in [8]. When nc independent
terms are used for each variable, replace p by ncp. A numerical
example that illustrates the computations can be found in [7].

This min-max Theorem leads to the following procedure for
computing the RS surviving causal combinations7:

1. Compute Fj∗(t) using Eq. (5).

2. Find the J uniquely different Fj∗(t) and re-label them
Fj′(j

′ = 1, ..., J).

3. Compute tFj′ , where (t = 1, ..., N)

tFj′ (t) =

{
1 if Fj′ = Fj∗(t)(t)

0 otherwise
(6)

4. Compute NFj′ , where

NFj′=

N∑
t=1

tFj′ (t) (7)

5. Establish theRS surviving causal combinations FS
v (v =

1, ..., RS), as:

FS
v =

{
Fj′(j

′ → v) if NFj′ ≥ f

0 if NFj′ < f
(8)

where Fj′(j
′ → v) means Fj′ is added to the set of surviving

causal combinations as FS
v , and v is the index of the surviving

set.
Numerical examples that illustrates this five-step procedure

can be found in [8].
In order to implement Eq. (8) threshold fhas to be chosen. In

our works, we often choose f = 1. This choice is arbitrary and
depends on an application and how many cases are available.
Discussions on how to choose f are given in [5-7, 14]. One

7This procedure is modeled after Step 6NEW in Fast fsQCA, as described
in [7].

popular way to choose f is as the integer such that at least
80% of all cases are covered by the set of surviving causal
combinations.

From Fj in Eq. (2) and FS
v in Eq. (8), it follows that (v =

1, ..., RS):

FS
v (x1, ..., xp) = FS

v (x) = Av
1(x1) ∧Av

2(x2) ∧ ... ∧Av
p(xp)

(9)
In [8] it is shown that the speedup between our method for
determining the surviving causal combinations and the brute-
force approach is ≈ O (2ncp), where nc is the number of terms
used for each variable (assumed to be the same for all variables).

Example: This example illustrates the number of surviv-
ing causal combinations for eight readily available data sets:
abalone [15], concrete compressive strength [15], concrete
slump test [15], wave force [16], chemical process concen-
tration readings [17], chemical process temperature readings
[17], gas furnace [17] and Mackey-Glass Chaotic Time Series
[18]. Our results are summarized in8 Table 1. For each problem
a two-cluster FCM was applied to all of its cases. The five-step
procedure described above was then used to determine RS .

Observe that: (1) for three variables (as occurs for wave force,
chemical process concentration reading and chemical process
temperature readings), the number of surviving causal combina-
tions is either the same number, or close to the same number, as
the number of candidate causal combinations, which suggests
that one should use more than two terms per variable; and, (2)
In all other situations the number of surviving causal combi-
nations is considerably smaller than the number of candidate
causal combinations. Although not shown here, this difference
increases when more terms per variable are used, e.g., using
three terms per variables the candidate causal combinations for
the concrete slump test data set is 134,217,728 whereas the
number of surviving causal combinations is only 97 [19].

Observe, from the last column in Table 1, that for four of
the problems RS ≥ 25. We seriously doubt that a human
designer could postulate the non-linear structures for so many
regressors/discriminant functions. Our method not only shows
that so many of them are necessary, it also finds their nonlinear
structures.

8The entries in this table were obtained by Mr. Mohammad M. Korjani, a Ph.
D. student in the Ming Hsieh Department of Electrical Engineering, University
of Southern California.
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Table 1. Number of surviving causal combinations for eight problems

Two terms per variablesa
Problem Cases Variables (p)

Candidate causal
combinations

(2p)

Surviving causal
combinations

(Rs)

Abalone [14] 4,177 7 128 55

Concrete compressive strength [14] 1,030 8 256 73

Concrete slump test [14] 103 9 512 71

Wave force [16] 317 3 8 8

Chemical process concentration reading [17] 194 3 8 8

Chemical process temperature readings [17] 223 3 8 6

Gas furnace [17] 293 6 64 25

Mackey-Glass chaotic time series [18] 1,000 4 16 8
a The two terms are low and high, and their fuzzy c-mean membership functions are the complements of one another.

6. Discussion

In Korjani and Mendel [19] have shown how the surviving
causal combinations can be used in a new regression model,
called variable structure regression (VSR). Using the surviving
causal combinations one can simultaneously determine the num-
ber of terms in the (nonlinear) regression model as well as the
exact mathematical structure for each of the terms (basis func-
tions). VSR has been tested on the eight small to moderate size
data sets that are stated in Table 1 (four are for multi-variable
function approximation and four are for forecasting), using only
two terms per variable whose MFs are the complements of one
another, has been compared against five other methods, and has
ranked #1 against all of them for all of the eight data sets.

Specific formulas for fuzzy basis function expansions can
be found in [12, 13]. Similar formulas for rule-based binary
classification can be found in [12].

Surviving causal combinations have also been used to obtain
linguistic summarizations using fsQCA [7, 8].

7. Conclusions

This paper presents a novel method for simultaneously and
automatically choosing the nonlinear structures of regressors or
discriminant functions, as well as the number of terms to include
in a rule-based regression model or pattern classifier. Variables

are first partitioned into subsets each of which has a linguistic
term (called a causal condition) associated with it; fuzzy sets
are used to model the terms. Candidate interconnections (causal
combinations) of either a term or its complement are formed,
where the connecting word is AND which is modeled using
the minimum operation. The data establishes which of the
candidate causal combinations survive. A novel theoretical
result leads to an exponential speedup in establishing this. For
specific applications, see [7, 8, 19].

Much work remains to be done in using surviving causal
combinations in real-world applications. The extension of the
min-max Theorem to interval type-2 fuzzy sets is currently
being researched.
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