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Abstract- A cellular automaton is well-known for self-organizing and dynamic behaviors in the field of artificial life,
This paper addresses a new neuronic architecture called an evolvable cellular classifier which evolves with the genetic
rules (chromosomes) in the non-uniform cellular automata. An evolvable cellular classifier is primarily based on
cellular programming, but its mechanism is simpler because it utilizes only mutations for the main genetic operators
and resembles the Hopfield network. Therefore, the desirable bit-patterns could be obtained through evolutionary
processes for just one individual agent. As a result, an evolvable hardware is derived which is applicable to

classification of bit-string information,

I. Introduction

Cellular automata are a class of discrete spatio-temporal
devices in which the spatial states and/or the genes of
each cell evolve with time. The behaviors of cellular
automata are so complex that even chaotic dynamics could
occur, and if conditions are satisfied, emergent behaviors
might be shown (Langton 1992). Historically, one can find
the origin of cellular automata from von Neumann's
self-organizing machines (von Neumann 1966), Conway's
famous game of life (Gardner 1971) is also a by-product of
cellular automata which reveals the fact that local
interactions may end up with global life-like behaviors,
Codd‘s cellular machines (Codd 1968) influenced deGaris’
evolving cellular brain machines (deGaris 1996). Wolfram
analyzed cellular automata and classified those into 4
categories (Wolfram 1994), and Langton‘s loop (Levy 1992)
is another example that shows self-organization. Mitchell,
Crutchfield, and Harber have investigated the dynamic
behaviors of evolving cellular automata (Mitchell et al,
1994), Sipper has solved several problems such as density,
synchronization, and ordering by using his own co-evolved
parallel cellular machines in- terms of cellular
programsing (Sipper 1997).

This paper is concerned with cellular programming but is
rather modified based on Hopfield networks (Hopfield 1982)
from the viewpoint of cellular automata, The main
objective is to propose a new paradigm of evolvable
neuronic architecture based on cellular automata which
classifies binary information and solves genetic rules
given by the prescribed bit-patterns of the cell states,

Therefore, given any distributions of initial states, the
genetic rules that have the cell states converge to the
exact bit-string, are evolved through mutations in
non-uniform genetic rules with an evolvable cellular
classifier, The proposed paradignm differs from cellular
programming because it doesn‘t use any crossover operators
nor co-evolution processes,

I1. Synthesis of Evolvable Cellular Classifiers
11.i Non_uniform Cellular Automata

First, consider the design procedure of an evolvable
cellular classifier. Each cell state consists of 1-bit
data in {0,1} and usually, the number of the neighborhood
is 3 in 1-D case and 5 (center, north, east, west, south)
in 2-D case of the von Neumann neighborhood. The dynamical
behavior of each cell is governed by an implicit rule set
called a “gene” , 8-bits in 1-D case and 32-bits in 2-D
case, respectively, distributed in a non-uniform lattice,
Figure 1 shows how a cell state is computed logically by
using the neighborhood surrounding itself., The boundaries
of cellular automata are cyclic in 1-D case and toroidal
in 2-D case,

(a)1-D CA(3 neighborhood)

(b)2-D CA(5 neighborhood)
Fig. 1. Local Function in Cellular Automata
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II.ii Structure of Evolving Cellular Classifiers
The cell states in evolvable cellular classifiers are
represented by

ct+1[i]=flD(ct[i_r]’."vct[i]v"'vct[i'i—r]) (la)
c.li,i—1]
cerlinil=fap|cli—1,i]1 cdi il e fi+1,5]](1b)

cili,i+1]

where c:[i] is the i-th cell state at time t, and fip, fa
are functions of 1-D cellular automata with {(2r+1)
neighborhood, 2-D cellular automata with von Neumann
neighborhood, respectively, The functional operations are
performed in parallel at each time t, Each cell in
cellular automata contains the genotypes of an 8-bit
binary genetic rule in 1-D case, and a 32-bit binary gene
in 2-D case, which are described by

gene[i}=g(local_fitness[i],genedi], <other_genes>) (2a)

gene[ijl=g(local_fitnessii,j],genefij), <other genes>) (2b)
where g is the genetic operator, gene. is a genetic rule
at time t, and local fitness, is a 1-bit local fitness
value in {0, 1} at time t. An optional input argument
{other genes) 1is taken into account when co-evolved
evolutionary processes are involved, The local fitness is
obtained by the exclusive NOR (XNOR) operation given by

local_fitness.J=XNOR(c,[.] desired_bit[.]) 3
where desired bit[.] is an arbitrarily chosen desirable
bit-pattern in {0, 1} related to the real-vorld
phenotypical representations,

e 7T cell_state[i] with 3 neighborhood
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Fig.2. Block Diagram of Evolvable Cellular Classifiers (1-D)

II.iii Evolutionary Process in Evolvable Cellular
Classifiers

In brief, the block diagram of an evolvable cellular
classifier is shown in Figure 2 in which the dynamic
behaviors of cell states are controlled by neighboring
cell states and non-uniform genetic rules, distributed
randomly at the initial stage. The main genetic operator
is a bit-wise partial mutation or inversion for each
genetic rule, The evolutionary processes are divided into
two phases, the evolving phase (A) and the test phase (B).
(A) In the evolving phase, as the desirable bits are
determined, an evolvable cellular classifier searches
suitable genes that induce the desirable bit-patterns of
the cell states, Even if the search is partially
completed, all the local fitness values may be satisfied,
(B) Therefore, it is required to continue to test an
evolvable neural network by fixing the genes and perform
parallel operations of non-uniform cellular automata, If
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at least one bit of the local fitness is not set during
the test phase, it switches to the evolving phase in order
to re-search the fittest genes. Since both processes are
performed in the steady-state, the genetic changes in the
transient response should be skipped by free-running for M
time steps which is closely related to the size of the
neighborhood, As the evolutionary processes continue, from
any initial distributions of the cell states, the final
cell states converge to the desired bit-patterns, and
thereafter, only the genes of an evolvable cellular
classifier may contribute to restoring the information,
I1.iv Programming Evolvable Cellular Classifier

The following pseudo-coded algorithm in Table 1 shows the
detailed procedure of programming an evolvable cellular
classifier, which is similar to Sipper's cellular
programming, but modified appropriately to resemble the
discrete Hopfield-type memories., Because the learning
algorithm is replaced with the evolutionary processes, the
initial random distributions of the cell states could be
classified into some desirable bit-patterns. Also, note
that it is possible to switch to the evolving phase at any
time during the test phase,

Evolvable Cellular Neural Network Programming:
set all desired bit[i]:
set random_genes:
random_configuration = (:
while not{converged),
set random_states:
time = 0:
free-run CA M-time-steps with the fixed non-uniform genes:
evaluate all local_fitness:
if (all local_fitness = 1),
else phase = evolving phase:
end if;
vhile not(all local_fitness[i] = 1},
for all cell{i] do in parallel:
update cell_state[i]:
if (desired_bit[i] = cell[i]),
else local_fitness{i] = 0
if (phase = evolving phase), mutation(gene[i]):
end if:
end if:
end parallel:
if (at_least_one local fitness = 0), phase = evolving phase:
end if:
time = time + 1:
end while:

phase = test_phase:

local_fitness{i] = I

random_configuration=random_configuration+1:
end while:
Table 1, Programming Evolvable Cellular Neural Networks
In the initial phase, the transient behaviors of the cell
states should be preserved by fixing the genetic rules for
some period of time, The proper value of the transient
period M depends on the number of neighborhood since a
cell state changes by referring to those cell states in
the vicinity of itself, Intuitively, we could make an
assumption that the steady-state response may be




influenced in a triangular form of propagation in the
nearby states, Therefore, M > 3X(2r+1) (1-D case) or M >
3X(the number of the neighborhood) is a good choice of
preserving the transient effects at the initial stage,
I1.v Local Fitness vs. Global Fitness

Here, an interesting concept of the relationship between
a local fitness and the global fitness arises, and it may
establish the link from the encoded genotypes to the
phenotype of feedback in the real-world environment, In
our case, a simple local fitness is defined in eq.(3)
which results from an error of local interaction between a
cell state and the desired state, and the global fitness,
in general, can be defined in eq.(4) as follows:

globalfitness, = #A(localfitness.[ - ]) (4)
gaix localfitness,[ i]

where h is an evaluating function, and & is a linear
coefficient so that the global fitness may be the weighted
sum of all the local fitness values.

II.vi Redundancy and Evolvable Cellular Classifiers
The local distributions of the genetic rules are
redundant in a sense that the same convergent bit-patterns
are likely to have many different genetic codes, The
reason results from the fact that the dynamic behaviors of
the same convergent bit-patterns of the cell states change
with a wide variety of sets of genetic rules which
eventually perform as a many-to-one mapping. Therefore, we
are able to store a collection of desirable bit
information under different initial conditions in the
nearby Hamming distance, It means that evolvable cellular
classifiers are applicable to classifiers which
appropriately separate the Hamming space, in which similar
coding problems of the existing neural networks in (Kosko
1988, Kang 1994) are dealt with as in associative
pemories, Only difference is the fact that the learning
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Fig. 3-(b). Evolutionary Process
of the 1% Configuration in 1-D
(Yin-Yang)
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Fig. 3-(c). Evolutionary & Test Processes in 1-D Test Pattern #1
(Yin-Yang) with Random Configuration No.'s 2,3,5,25,34 and 68
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process is supervisory and evolutionary, In Table 1, the
algorithm is slightly modified to include several desired
bit-patterns at the same time as the evolution proceeds,
That is, for each configuration, the multiple initial
distributions corrupted by bit-reversal noise are applied
simultaneously to the associated states with the same
genetic rules. The local fitness evaluation is also
changed in such a way that a local fitness value in each
cell is set to 1 only if every state values of the cell at
the same location for different desired values are
satisfied. This is due to redundancies in producing 0's

and 1's of each gene as mentioned above.

IIT Main Results : Online Evolution of Evolvable
Cellular Classifiers

The initial densities of the cell states are chosen so
that the probability of 1's is 0.5 (p=0.5) which may vary
in some applications, For example, in a pattern
classification problem, the desired bits can be disturbed
by random noise and these may be prepared for the initial
distributions, The maximally allowed mutation probability
is 100% and the mutation rate per gene is varied from 1/8
to 1/2 in both 1-D or 2-D cases, Also, the free-running
period M is 15, and ai's in eq.(4) are chosen 1/L where L
is the lattice size (L = 64, L = 16 x 16 or 32 x 32).
II1. i Examples of 1-D Evolvable Cellular Classifiers
Two desirable bit-patterns, ‘Yin-Yang' and 'Stripes’, are
applied to 1-D evolvable cellular classifier. The evolving
phase of the initial (0™) configuration is shown in Figure
3-(a) for the Yin-Yang' pattern where the cell states
(left-top), the evolving genetic rules (right-top), the
local fitness values (left-bottom), and the global fitness
(right-bottom) are shown. Figure 3-(b) represents the same
graphs as in Figure 3-(a), but the evolving phase of the
1** configuration is shown where the frequency of mutations
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is reduced conspicuously, Note that the number of changes
in genetic rules is decreased both in time and in size. In
Figure 3-(c), it is shown that the evolving and test
phases take turns in order for the genetic information to
converge under the random configuration no,’s 2, 3, 5, 25,
34, & 68. Figure 4-(a) also demonstrates the evolving
phase of the initial (0™) configuration for the 'Stripes’
pattern, Similarly, Figure 4-(b) and Figure 4-(c) show the
evolving phase of the 1% configuration and the combined
phases under the random configuration no.’s 2, 3, 5, 25, &
77, respectively. For the testing purpose only, the cell
states and the associated genes are represented in Figure
5, in which the fixed genes are applied as the results of
runs for each random configuration. Figure 5-(a) and
Figure 5-(b) show the results of the 'Yin-Yang' test
pattern and the 'Stripes’ pattern, respectively. As the
mutation rates per gene change, the average global fitness
values of the test pattern no.2 (’'Stripes’) are compared
in Figure 6 where the mutation rates per gene are varied
1/8, 2/8, 3/8, and 4/8. Although it is not obvious to see
that a large mutation rate per gene results in better
performance, the final trend reveals that the global
fitness converges to 1 faster if the mutation rate per
gene is larger,

For a long-term evaluation of evolvable cellular
classifiers, we may consider the information aspect of the
entropy concept(Shannon 1948). Let p be the probability of
success (say, ‘l1’) in a cell state and let T be the
observation time, then the entropy E(p) of the binomial
distribution becomes

E[p(T)] = —p(Tlog,{p(T)} (5)
— (1= p(THlog {1~ p(T))

where the probability p(T) in each cell is calculated
during the observation time T Here, in Figure 7, the

spatio-temporal entropy values are compared between two
test phases in the 0™ and the 80" configurations of a 1-D
evolvable cellular classifier,
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configuration shows less entropy values, which means that
the randomness in the cell structure reduces as the
evolutionary phase proceeds, in accordance with our
anticipation. In Figure 8, an evolvable cellular
classifier plays a role as a pattern classifier to which
two complementary test patterns of 'Yin-Yang' are applied
where two initial conditions converge to the two desirable
complementary ‘Yin-Yang’ patterns, It demonstrates how one
set of genetic rules may produce different cell states
from the various initial distributions located in the
nearest Hamming distance. Here, the initial states are
disturbed by 10% bit-reversal noise each, As mentioned
earlier, redundancy in the cell chromosomes is the primary
reason for the classification mechanism, Therefore, an
evolvable cellular classifier can be used for
classification probiems,

II1.ii Examples of 2-D Evolvabie Cellular Classifiers
In 2-D evolvable cellular classifiers, a 32-bit genetic
rule is included in each cell because von Neumann
neighborhood are used, Here, two test patterns, 'Checker
Board" {16x16) and ‘Butterfly’ (32x32) are applied in the
evolving and test phases. Figure 9 shows the test phases
in the 1190™ configuration of ‘Checker Board’ in which the
cell states, with the fixed genes, converge to the
desirable bit-pattern within 20 steps. The evolved genes
show a symmetric pattern inside the grid structure. For
the sake of evaluation, the entropy values at time, t =
100, are also compared between two test phases in the 0™
and the 1190 configurations of a 2-D evolvable cellular
classifier as shown in Figure 10. As in the previous case,
the spatial entropy is reduced in the later configuration
due to self-or tion as the evolvi phases p oceed

{a) Cell Entropy (0™ Config.) (b} Cell Entropy (80" Config.)
Fig. 7. Spatio-Temporal Entropy in 1-D Case
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Fig. 8. 2 Cases in Evolving Phase as a Pattern Classifier



Fig. 9. Test Phase of 119" Configuration in 2-D Evolvable
Cellular Classifiers (Checker Board)

(a) Cell Entropy (0" Config.)
Fig, 10, Spatial Entropy of 2-D Evolvable Cellular
Classifiers (at t=100, Checker Board)

(b) Cell Entropy {1190 Config. )

Note that as the time increases, the latter spatial
entropy decreases to zero with the 1190 configuration,
but the former does not. Finally, in Figure 11, the
genetic rules of a complex bit-pattern ‘Butterfly’ are
evolved and tested under 10%¥ bit-reversal noise,
Remarkably, the genetic rules in the grid structure show
resemblance with the prescribed bit-patterns,

IV. Conclusions and Discussion

A new paradigm of cellular classifiers, evolvable cellular
classifiers, is proposed, and an online evolutionary
algorithm is developed, Initially, the genes are evolved,
and then, both evolving and test phases take turns in
order to separate randomly disturbed bit-string vectors
into the nearest bit-patterns, Thus, evolvable neural
networks are derived in terms of non-uniform cellular
automata where the nonlinear function units are replaced
with the nonlinear logical and-or gates, The core
processing elements refer to the neighborhood of each cell
and perform self-organization of the genetic rules that
eventually classify the desirable bit-patterns due to
redundancies in the genetic rules. Moreover, an evolvable
hardware of the proposed neuronic architecture is
implemented and successfully tested, It is believed that
the mechanism of evolvable cellular neuronic systems make
a new promising tool for the pattern classification of

bit-string information,
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