• Title/Summary/Keyword: intelligent classification

Search Result 915, Processing Time 0.049 seconds

Integrating Spatial Proximity with Manifold Learning for Hyperspectral Data

  • Kim, Won-Kook;Crawford, Melba M.;Lee, Sang-Hoon
    • Korean Journal of Remote Sensing
    • /
    • v.26 no.6
    • /
    • pp.693-703
    • /
    • 2010
  • High spectral resolution of hyperspectral data enables analysis of complex natural phenomena that is reflected on the data nonlinearly. Although many manifold learning methods have been developed for such problems, most methods do not consider the spatial correlation between samples that is inherent and useful in remote sensing data. We propose a manifold learning method which directly combines the spatial proximity and the spectral similarity through kernel PCA framework. A gain factor caused by spatial proximity is first modelled with a heat kernel, and is added to the original similarity computed from the spectral values of a pair of samples. Parameters are tuned with intelligent grid search (IGS) method for the derived manifold coordinates to achieve optimal classification accuracies. Of particular interest is its performance with small training size, because labelled samples are usually scarce due to its high acquisition cost. The proposed spatial kernel PCA (KPCA) is compared with PCA in terms of classification accuracy with the nearest-neighbourhood classification method.

A Study proposal for URL anomaly detection model based on classification algorithm (분류 알고리즘 기반 URL 이상 탐지 모델 연구 제안)

  • Hyeon Wuu Kim;Hong-Ki Kim;DongHwi Lee
    • Convergence Security Journal
    • /
    • v.23 no.5
    • /
    • pp.101-106
    • /
    • 2023
  • Recently, cyberattacks are increasing in social engineering attacks using intelligent and continuous phishing sites and hacking techniques using malicious code. As personal security becomes important, there is a need for a method and a solution for determining whether a malicious URL exists using a web application. In this paper, we would like to find out each feature and limitation by comparing highly accurate techniques for detecting malicious URLs. Compared to classification algorithm models using features such as web flat panel DB and based URL detection sites, we propose an efficient URL anomaly detection technique.

Constructing User Preferred Anti-Spam Ontology using Data Mining Technique (데이터 마이닝 기술을 적용한 사용자 선호 스팸 대응 온톨로지 구축)

  • Kim, Jong-Wan;Kim, Hee-Jae;Kang, Sin-Jae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.17 no.2
    • /
    • pp.160-166
    • /
    • 2007
  • When a mail was given to users, each user's response could be different according to his or her preference. This paper presents a solution for this situation by constructing a user preferred ontology for anti-spam systems. To define an ontology for describing user behaviors, we applied associative classification mining to study preference information of users and their responses to emails. Generated classification rules can be represented in a formal ontology language. A user preferred ontology can explain why mail is decided to be spam or ron-spam in a meaningful way. We also suggest a new rule optimization procedure inspired from logic synthesis to improve comprehensibility and exclude redundant rules.

A Kidnapping Detection Using Human Pose Estimation in Intelligent Video Surveillance Systems

  • Park, Ju Hyun;Song, KwangHo;Kim, Yoo-Sung
    • Journal of the Korea Society of Computer and Information
    • /
    • v.23 no.8
    • /
    • pp.9-16
    • /
    • 2018
  • In this paper, a kidnapping detection scheme in which human pose estimation is used to classify accurately between kidnapping cases and normal ones is proposed. To estimate human poses from input video, human's 10 joint information is extracted by OpenPose library. In addition to the features which are used in the previous study to represent the size change rates and the regularities of human activities, the human pose estimation features which are computed from the location of detected human's joints are used as the features to distinguish kidnapping situations from the normal accompanying ones. A frame-based kidnapping detection scheme is generated according to the selection of J48 decision tree model from the comparison of several representative classification models. When a video has more frames of kidnapping situation than the threshold ratio after two people meet in the video, the proposed scheme detects and notifies the occurrence of kidnapping event. To check the feasibility of the proposed scheme, the detection accuracy of our newly proposed scheme is compared with that of the previous scheme. According to the experiment results, the proposed scheme could detect kidnapping situations more 4.73% correctly than the previous scheme.

Image Compression using an Intelligne Classified Vector Quantization Method in Transform Domain (변환영역에서의 지능형 분류벡터양자화를 이용한 영상압축)

  • 이현수;공성곤
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.7 no.4
    • /
    • pp.18-28
    • /
    • 1997
  • This paper presents image data compression using a classified vector quantization (CVQ) which categories edge blocks according to the energy distribution of subimages in the discrete cosine transform domain. Classifying the edge blocks enhances visual quality of the compressed images while maintaining a high compression ratio. The proposed classification method categories subimages into eight lypes of edge features according to an energy distribution. A neural network, trained with the data generated from the proposed classification method, can successfully classify subimages to eight edge categories. Experimental results are given to show how the (1VQ method incorporatd with a neural network can produce faithful compressed image quality for high compression ratios.

  • PDF

Tire Tread Pattern Classification Using Fuzzy Clustering Algorithm (퍼지 클러스터링 알고리즘을 이용한 타이어 접지면 패턴의 분류)

  • 강윤관;정순원;배상욱;김진헌;박귀태
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.5 no.2
    • /
    • pp.44-57
    • /
    • 1995
  • In this paper GFI (Generalized Fuzzy Isodata) and FI (Fuzzy Isodata) algorithms are studied and applied to the tire tread pattern classification problem. GFI algorithm which repeatedly grouping the partitioned cluster depending on the fuzzy partition matrix is general form of GI algorithm. In the constructing the binary tree using GFI algorithm cluster validity, namely, whether partitioned cluster is feasible or not is checked and construction of the binary tree is obtained by FDH clustering algorithm. These algorithms show the good performance in selecting the prototypes of each patterns and classifying patterns. Directions of edge in the preprocessed image of tire tread pattern are selected as features of pattern. These features are thought to have useful information which well represents the characteristics of patterns.

  • PDF

Recursive Fuzzy Partition of Pattern Space for Automatic Generation of Decision Rules (결정규칙의 자동생성을 위한 패턴공간의 재귀적 퍼지분할)

  • 김봉근;최형일
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.5 no.2
    • /
    • pp.28-43
    • /
    • 1995
  • This paper concerns with automatic generation of fuzzy rules which can be used for pattern classification. Feature space is recursively subdivided into hyperspheres, and each hypersphere is represented by its centroid and bounding distance. Fuzzy rules are then generated based on the constructed hyperspheres. The resulting fuzzy rules have very simple premise parts, and they can be organized into a hierarchical structure so that classification process can be implemented very rapidly. The experimented results show that the suggested method works very well compared to other methods.

  • PDF

Half-Against-Half Multi-class SVM Classify Physiological Response-based Emotion Recognition

  • Vanny, Makara;Ko, Kwang-Eun;Park, Seung-Min;Sim, Kwee-Bo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.23 no.3
    • /
    • pp.262-267
    • /
    • 2013
  • The recognition of human emotional state is one of the most important components for efficient human-human and human- computer interaction. In this paper, four emotions such as fear, disgust, joy, and neutral was a main problem of classifying emotion recognition and an approach of visual-stimuli for eliciting emotion based on physiological signals of skin conductance (SC), skin temperature (SKT), and blood volume pulse (BVP) was used to design the experiment. In order to reach the goal of solving this problem, half-against-half (HAH) multi-class support vector machine (SVM) with Gaussian radial basis function (RBF) kernel was proposed showing the effective techniques to improve the accuracy rate of emotion classification. The experimental results proved that the proposed was an efficient method for solving the emotion recognition problems with the accuracy rate of 90% of neutral, 86.67% of joy, 85% of disgust, and 80% of fear.

Evolutionary Learning of Sigma-Pi Neural Trees and Its Application to classification and Prediction (시그마파이 신경 트리의 진화적 학습 및 이의 분류 예측에의 응용)

  • 장병탁
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.6 no.2
    • /
    • pp.13-21
    • /
    • 1996
  • The necessity and usefulness of higher-order neural networks have been well-known since early days of neurocomputing. However the explosive number of terms has hampered the design and training of such networks. In this paper we present an evolutionary learning method for efficiently constructing problem-specific higher-order neural models. The crux of the method is the neural tree representation employing both sigma and pi units, in combination with the use of an MDL-based fitness function for learning minimal models. We provide experimental results in classification and prediction problems which demonstrate the effectiveness of the method. I. Introduction topology employs one hidden layer with full connectivity between neighboring layers. This structure has One of the most popular neural network models been very successful for many applications. However, used for supervised learning applications has been the they have some weaknesses. For instance, the fully mutilayer feedforward network. A commonly adopted connected structure is not necessarily a good topology unless the task contains a good predictor for the full *d*dWs %BH%W* input space.

  • PDF

Confocal Raman Spectrum Classification Using Fisher Measure based Filtering for Basal Cell Carcinoma Detection (기저세포암종 탐지를 위한 피셔척도 필터링 기반 공초점 라만 스펙트럼 분류)

  • Min So-Hui;Kim Jin-Yeong;Baek Seong-Jun;Na Seung-Yu;Ju Jae-Beom
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2006.05a
    • /
    • pp.203-207
    • /
    • 2006
  • This paper deals with a problem of detecting BCC using confocal raman spectrum. Specially, we propose Fisher measure based filtering for rejection of frequency components being noisy or non-discriminative. we use PCA (principal component analysis) for reduction of feature space dimension. Also, we apply MAP detector for classification of BCC raman spectrum. The experimental results shows that our proposed method can reduce the feature dimension and also raise the detection ratio.

  • PDF