• 제목/요약/키워드: intelligent classification

검색결과 915건 처리시간 0.027초

Design and Implementation of Intelligent Agent System for Pattern Classification

  • Kim, Dae-su;Park, Ji-hoon;Chang, Jae-khun;Na, Guen-sik
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • 제11권7호
    • /
    • pp.598-602
    • /
    • 2001
  • Recently, due to the widely use of personal computers and internet, many computer users requested intelligent system that can cope with various types of requirements and user-friendly interfaces. Based on this background, researches on the intelligent agent are now activating in various fields. In this paper, we modeled, designed and implemented an intelligent agent system for pattern classification by adopting intelligent agent concepts. We also investigated the pattern classification method by utilizing some pattern classification algorithms for the common data. As a result, we identified that 300 3-dimensional data are applied to three pattern classification algorithms and returned correct results. Our system showed a distinguished user-friendly interface feature by adopting various agents including graphic agent.

  • PDF

Modeling and Design of Intelligent Agent System

  • Kim, Dae-Su;Kim, Chang-Suk;Rim, Kee-Wook
    • International Journal of Control, Automation, and Systems
    • /
    • 제1권2호
    • /
    • pp.257-261
    • /
    • 2003
  • In this study, we investigated the modeling and design of an Intelligent Agent System (IAS). To achieve this goal, we introduced several kinds of agents that exhibit intelligent features. These are the main agent, management agent, watcher agent, report agent and application agent. We applied the intelligent agent concept to two different application fields, i.e. the intelligent agent system for pattern classification and the intelligent agent system for bank asset management modeling.

Scalable Packet Classification Algorithm through Mashing (Hashing을 사용한 Scalable Packet Classification 알고리즘 연구)

  • Heo, Jae-Sung;Choi, Lynn
    • Proceedings of the IEEK Conference
    • /
    • 대한전자공학회 2002년도 하계종합학술대회 논문집(1)
    • /
    • pp.113-116
    • /
    • 2002
  • It is required to network to make more intelligent packet processing and forwarding for increasing bandwidth and various services. Classification provides these intelligent to network which is acquired by increasing number of rules in classification rule set. In this Paper, we propose a classification algorithm efficient to scalable rule set ahead as well as Present small rule set. This algorithm has competition to existing methods by performance and advantage that it is mixed with another algorithm because il does not change original shape of rule set.

  • PDF

A Study on the Classification of Cyber Dysfunction and the Social Cognition Analysis in the Intelligent Information Society (지능정보사회의 사이버 역기능 분류와 사회적 인식 분석)

  • Lim, Gyoo Gun;Ahn, Jae Ik
    • Journal of Information Technology Services
    • /
    • 제19권1호
    • /
    • pp.55-69
    • /
    • 2020
  • The Internet cyber space has become more important as it enters the intelligent information society of the 4th Industrial Revolution beyond the information age through the development of ICT, the expansion of personalized services through mobile and SNS, the development of IoT, big data, and artificial intelligence. The Internet has formed a new paradigm in human civilization, but it has focused only on the efficiency of its functions. Therefore, various side effects such as information divide, cyber terrorism, cyber violence, hacking, and personal information leakage are emerging. In this situation, facing the intelligent information society can lead to an uncontrollable chaos. Therefore, this study classifies the cyber dysfunction of intelligent information society and analyzes social cognition, suggests cyber dysfunction standard of intelligent information society, and examines the seriousness of dysfunction, and suggests technical research directions for future technologies and services. The dysfunctional classification of the intelligent information society was classified into five areas of cyber crime and terrorism, infringement of rights, intelligent information usage culture, intelligent information reliability, and social problems by FGI methodology. Based on the classification, the social perception of current and future cyber dysfunction severity was surveyed and it showed female is more sensitive than male about the dysfunction. A GAP analysis confirmed social awareness that the future society would be more serious about AI and cyber crime

DEVELOPMENT OF OCCUPANT CLASSIFICATION AND POSITION DETECTION FOR INTELLIGENT SAFETY SYSTEM

  • Hannan, M.A.;Hussain, A.;Samad, S.A.;Mohamed, A.;Wahab, D.A.;Ariffin, A.K.
    • International Journal of Automotive Technology
    • /
    • 제7권7호
    • /
    • pp.827-832
    • /
    • 2006
  • Occupant classification and position detection have been significant research areas in intelligent safety systems in the automotive field. The detection and classification of seat occupancy open up new ways to control the safety system. This paper deals with a novel algorithm development, hardware implementation and testing of a prototype intelligent safety system for occupant classification and position detection for in-vehicle environment. Borland C++ program is used to develop the novel algorithm interface between the sensor and data acquisition system. MEMS strain gauge hermatic pressure sensor containing micromachined integrated circuits is installed inside the passenger seat. The analog output of the sensor is connected with a connector to a PCI-9111 DG data acquisition card for occupancy detection, classification and position detection. The algorithm greatly improves the detection of whether an occupant is present or absent, and the classification of either adult, child or non-human object is determined from weights using the sensor. A simple computation algorithm provides the determination of the occupant's appropriate position using centroidal calculation. A real time operation is achieved with the system. The experimental results demonstrate that the performance of the implemented prototype is robust for occupant classification and position detection. This research may be applied in intelligent airbag design for efficient deployment.

Development of An Operation Monitoring System for Intelligent Dust Collector By Using Multivariate Gaussian Function (Multivariate Gaussian Function을 이용한 지능형 집진기 운전상황 모니터링 시스템 개발)

  • Han, Yun-Jong;Kim, Sung-Ho
    • Proceedings of the KIEE Conference
    • /
    • 대한전기학회 2006년 학술대회 논문집 정보 및 제어부문
    • /
    • pp.470-472
    • /
    • 2006
  • Sensor networks are the results of convergence of very important technologies such as wireless communication and micro electromechanical systems. In recent years, sensor networks found a wide applicability in various fields such as environment and health, industry scene system monitoring, etc. A very important step for these many applications is pattern classification and recognition of data collected by sensors installed or deployed in different ways. But, pattern classification and recognition are sometimes difficult to perform. Systematic approach to pattern classification based on modem learning techniques like Multivariate Gaussian mixture models, can greatly simplify the process of developing and implementing real-time classification models. This paper proposes a new recognition system which is hierarchically composed of many sensor nodes having the capability of simple processing and wireless communication. The proposed system is able to perform context classification of sensed data using the Multivariate Gaussian function. In order to verify the usefulness of the proposed system, it was applied to intelligent dust collecting system.

  • PDF

Classification of Multi Spectral Image Data using Rough Sets (러프 집합을 이용한 다중 분광 이미지 데이터의 분류)

  • 원성현;이병성;정환묵
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 한국퍼지및지능시스템학회 1997년도 춘계학술대회 학술발표 논문집
    • /
    • pp.205-208
    • /
    • 1997
  • Traditionally, classification of remote sensed image data is one of the important works for image data analysis procedure. So, many researchers devote their endeavor to increasing accuracy of analysis, also, many classification algorithms have been proposed. In this paper, we propose new classification method for remote sensed image data that use rough set theory. Using indiscernibility relation of rough sets, we show that can classify image data very easily.

  • PDF

Approximate Pattern Classification with Rough set (Rough 집합을 이용한 근사 패턴 분류)

  • 최성혜;정환묵
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 한국퍼지및지능시스템학회 1997년도 춘계학술대회 학술발표 논문집
    • /
    • pp.248-251
    • /
    • 1997
  • In this paper, We propose the concept of approximate Classification in the field of two group discriminan analysis. In our approach, an attribute space is divided into three subspaces. Two subspaces are for given two group and one subspace is for a boundary area between the two groups. We propose Approximate Pattern Classification with Rough set. We also propose learning procedures of neural networks for approximate classification. We propose two weighting methods which lead to possibility analysis and necessity analysis. We illustrate the proposed methods by numerical examples.

  • PDF

Developing a Classification Matrix of Intelligent Geospatial Information Services (지능형 공간정보 서비스 분류 매트릭스)

  • Kim, Jung-Yeop;Lee, Yong-Ik;Park, Soo-Hong
    • Journal of Korea Spatial Information System Society
    • /
    • 제11권1호
    • /
    • pp.157-168
    • /
    • 2009
  • Geospatial information, which deeply has an effect on our life, have been evolved as intelligent geospatial information in Ubiquitous era. Also, Various services are introduced using the intelligent geospatial information. However, there is no classification system, for understanding the intelligent geospatial information services, considering any developers and users. It needs to be classification system to classify these services. In this paper, we introduced a concept of intelligent geospatial information and developed a service classification matrix regarding to the features of the services. This service classification matrix has three scales; service domain, service intelligent level, and geo-location accuracy. The propose of this matrix can be utilized in two aspects. First, the matrix can improve the reality that doesn't reflect actual demands for the services. Second, the matrix can present the goal of the new services or the development direction. The matrix can be utilized to the geospatial industry as creating the new blue ocean services. However, the service classification matrix needs to modify and complement to have no anything wrong when the various services are applied to the matrix. In the long run, the matrix has to be utilized as a material to make out a service roadmap or TRM(Technical Reference Model).

  • PDF

Intrusion Situation Classification Model for Intelligent Intrusion Awareness (지능적인 침입 인지를 위한 침입 상황 분류 모델)

  • Hwang, Yoon-Cheol;Mun, Hyung-Jin
    • Journal of Convergence for Information Technology
    • /
    • 제9권3호
    • /
    • pp.134-139
    • /
    • 2019
  • As the development of modern society progresses rapidly, the technologies of society as a whole are progressing and becoming more advanced. Especially in the field of security, more sophisticated and intelligent attacks are being created. Meanwhile, damaging situations are becoming several times larger than before Therefore, it is necessary to re-classify and enhance the existing classification system. It is required to minimize the intrusion damage by actively responding to intelligent intrusions by applying this classification scheme to currently operating intrusion detection systems. In this paper, we analyze the intrusion type caused by intelligent attack We propose a new classification scheme for intrusion situations to guarantee the service safety, reliability, and availability of the target system, We use this classification model to lay the foundations for the design and implementation of a smart intrusion cognitive system capable of early detection of intrusion, the damages caused by intrusion, and more collections active response.