• Title/Summary/Keyword: integration of signals

Search Result 171, Processing Time 0.028 seconds

A Covariance Analysis Using the Kalman Filterings for Interrelationships Research between Sensor Signals of the Real Time Simulator of Launch Control System in the NARO Space Center (나로우주센터 발사관제시스템 실시간 발사관제 모의장치의 센서 신호간 연관성 해석을 위한 퍼지-칼만필터 공분산 분석)

  • Hong Il-Hee;Department of Electrical Engineering Chungnam National University Yang-MoKim
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.42 no.4 s.304
    • /
    • pp.25-34
    • /
    • 2005
  • We had research to conduct interrelationships between sensors using postprocessing analysis with the Fuzzy-Kalman Filtering Auto-Correlation about Real Time Simulator data of the NaroSC LCS in case of a fully blind situation scenario. The conducted interrelations are same harmony with relations in scenario. We had analyzed signals of sensors reverse-using a optimization character of Fuzzy-Kalman Filter. As our research conclusion, We had recognized possibilities of signal processing about the KSLV-1, on-board payloads, general equipments of ground support which apply to multi sensor systems.

Design and Fabrication of the MMIC frequency doubler for 29 ㎓ local Oscillators

  • Kim, Sung-Chan;Kim, Jin-Sung;Kim, Byeong-Ok;Shin, Dong-Hoon;Rhee, Jin-Koo;Kim, Do-Hyun
    • Proceedings of the IEEK Conference
    • /
    • 2002.07b
    • /
    • pp.1062-1065
    • /
    • 2002
  • We demonstrate the MMIC(monolithic microwave integrated circuit) frequency doublers generating stable and low-cost 29 ㎓ local oscillator signals from 14.5 ㎓ input signals. These devices were designed and fabricated by using the MMIC integration process of 0.1 $\mu\textrm{m}$ gate-length PHEMTs (pseudomorphic high electron mobility transistors). The measurements showed S$\_$11/ of -9.2 dB at 14.5 ㎓, S/sub22/ of -18.6 dB at 29 ㎓ and a minimum conversion loss of 18.2 dB at 14.5 ㎓ with an input power of 6 dBm. The fundamental signal of 14.5㎓ was suppressed below 15.2 dBc compared with the second harmonic signal at the output port, and the isolation characteristics of the fundamental signal between the input and the output port were maintained above 30 dB in the frequency range of 10.5 ㎓ to 18.5 ㎓.

  • PDF

Event-related potentials reveal neural signatures of cross-modal interaction between visual and tactile stimulation (유발전위신호(ERP)를 통한 시각과 촉각 통합작용의 신경생리적 특징 분석)

  • Ju, Yu-Mi;Lee, Kyoung-Min
    • Proceedings of the Korean Society for Cognitive Science Conference
    • /
    • 2010.05a
    • /
    • pp.48-54
    • /
    • 2010
  • INTRODUCTION Interaction between temporal events at the millisecond level is important for visual and tactile interaction. OBJECT The aim of the present study is to identify any neural signature, as reflected in event-related potentials (ERP), for the integrative processes when the two sensory modalities are stimulated in synchrony as opposed to when they are stimulated separately. METHOD The basic strategy was to compare ERP signals obtained with simultaneous visual and tactile stimulation with a linear summation of ERP patterns obtained with each modality stimulated separately. Condition were presented, paired with various stimulus-onset-asynchronies (SOA) ranging from - 300 ms (tactile-first) to 300 ms (visual-first), and in trials where only one modality was stimulated alone. RESULT A positive deviation was located in observed ERP at C4 electrode (contralateral to the stimulated hand) at 200-400 ms, in comparison to the predicted ERP. The deviation was present at all SOAs other than -300ms (tactile-first) and 300 ms (visual-first). There was also a positive deviation at occipital leads at the 50-ms SOA (visual-first) trials. DISCUSSION It suggested that neural signatures of cross-modal integration occur within a limited time-window. The deviations were specifically localized at the contralateral somatosensory and visual cortices, indicating that the integration happens at or before the level of the primary cortices.

  • PDF

Method for Eliminating Spurious Signal from Deramped SAR Raw Data (Deramped SAR 원시데이터에서 효율적인 Spurious 신호 제거 기법)

  • Lim, Byoung-Gyun;Ryu, Sang-Bum
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.3
    • /
    • pp.239-245
    • /
    • 2016
  • Deramping technique has been widely used to acquire high resolution SAR(Synthetic Aperture Radar) images for the advantage of the data size and the processing time. However, unwanted spurious signals caused by SAR hardware can be leaked in the process of converting into a digital signal through the ADC(Analog-Digital Converter) and added in a echo signal. These tones make image quality degrade significantly. In order to solve this problem, the unwanted tones need to be detected by analysing the characteristic of the noise tone and then effectively removed from raw data. In this paper, we propose a method for efficiently removing noise tone on the raw data based on the characteristic of spurious signals.

Development of an FMCW Radar Altimeter Simulator Using Optical Delay Lines (광 지연선을 이용한 FMCW 전파고도계 시뮬레이터 개발)

  • Lee, Jae-Hwan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.28 no.3
    • /
    • pp.208-216
    • /
    • 2017
  • This paper presents the design method of an FMCW(frequency-modulated continuous-wave) altitude simulator which generates propagation delay signals according to target distances to test the radar altimeter. To improve the conventional RF method for creating delay signals, the simulator is designed by the RF-optics-RF method using optical delay lines. In addition, it is designed to simulate the Doppler shift and jamming that may occur in actual flight environment. In order to evaluate the performance of the developed simulator, the integration tests have been conducted with the radar altimeter. Through the test, we successfully verified the performance of the simulator.

Dynamic Analysis of A High Mobility Tracked Vehicle Using Compliant Track Link Model (유연성 궤도 모델을 사용한 고기동성 궤도차량의 동역학 해석)

  • 백운경;최진환;배대성
    • Journal of KSNVE
    • /
    • v.9 no.6
    • /
    • pp.1259-1266
    • /
    • 1999
  • The objective of this investigation is to develop a compliant track link model and apply this model to the multi-body dynamic analysis of high mobility tracked vehicles. Two major difficulties encountered in developing the compliant track models. The first one is that the integration step size must be kept small in order to maintain the numerical stability of the solution. This solution deals with high oscillatory signals resulting from the impulsive contact forces and stiff compliant elements to represent the joints between the track links. The second difficulty is due to the large number of the system equations of motion of the three dimensional multibody tracked vehicle model. This problem was sloved by decoupling the equations of motion of the chassis subsystem and the track subsystems. Recursive methods are used to obtain a minimum set of equations for the chassis subsystem. Several simulation scenarios were tested for the high mobility tracked vehicle including accelaeration, high speed cruising, braking, and turning motion in order to demonstrate the effectiveness and validity of the methods proposed in this investigation.

  • PDF

Real-time 14N NQR-based sodium nitrite analysis in a noisy field

  • Mohammad Saleh Sharifi;Ho Seung Song;Hossein Afarideh;Mitra Ghergherehchi;Mehdi Simiari
    • Nuclear Engineering and Technology
    • /
    • v.55 no.12
    • /
    • pp.4570-4575
    • /
    • 2023
  • Noise and Radio-frequency interference or RFI causes a significant restriction on the Free induction Decay or FID signal detection of the Nuclear Quadrupole Resonance procedure. Therefore, using this method in non-isolated environments such as industry and ports requires extraordinary measures. For this purpose, noise reduction algorithms and increasing signal-to-noise-and-interference ratio or SNIR have been used. In this research, sodium nitrite has been used as a sample and algorithms have been tested in a non-isolated environment. The resonant frequencies for the 150 g of test sample were measured at 303 K at about 1 MHz and 3.4 MHz. The main novelty in this study was, (1) using two types of antennas in the receiver to improve adaptive noise and interference cancellation, (2) using a separate helical antenna in the transmitter to eliminate the duplexer, (3) estimating the noise before sending the pulse to calculate the weighting factors and reduce the noise by adaptive noise cancellation, (3) reject the interference by blanking algorithm, (4) pulse integration in the frequency domain to increase the SNR, and (5) increasing the detection speed by new pulse integration technique. By interference rejection and noise cancellation, the SNIR is improved to 9.24 dB at 1 MHz and to 7.28 dB at 3.4 MHz, and by pulse integration 44.8 dB FID signal amplification is achieved, and the FID signals are detected at 1.057 MHz and 3.402 MHz at room temperature.

DEVELOPMENT OF MATDYMO (MULTI-AGENT FOR TRAFFIC SIMULATION WITH VEHICLE DYNAMICS MODEL) I: DEVELOPMENT OF TRAFFIC ENVIRONMENT

  • CHOI K. Y.;KWON S. J.;SUH M. W.
    • International Journal of Automotive Technology
    • /
    • v.7 no.1
    • /
    • pp.25-34
    • /
    • 2006
  • For decades, simulation technique has been well validated in areas such as computer and communication systems. Recently, the technique has been much used in the area of transportation and traffic forecasting. Several methods have been proposed for investigating complex traffic flows. However, the dynamics of vehicles and diversities of driver characteristics have never been considered sufficiently in these methods, although they are considered important factors in traffic flow analysis. In this paper, we propose a traffic simulation tool called Multi-Agent for Traffic Simulation with Vehicle Dynamics Model (MATDYMO). Road transport consultants, traffic engineers and urban traffic control center managers are expected to use MATDYMO to efficiently simulate traffic flow. MATDYMO has four sub systems: the road management system, the vehicle motion control system, the driver management system, and the integration control system. The road management system simulates traffic flow for various traffic environments (e.g., multi-lane roads, nodes, virtual lanes, and signals); the vehicle motion control system constructs the vehicle agent by using various vehicle dynamic models; the driver management system constructs the driver agent capable of having different driving styles; and lastly, the integrated control system regulates the MATDYMO as a whole and observes the agents running in the system. The vehicle motion control system and driver management system are described in the companion paper. An interrupted and uninterrupted flow model were simulated, and the simulation results were verified by comparing them with the results from a commercial software, TRANSYT-7F. The simulation result of the uninterrupted flow model showed that the driver agent displayed human-like behavior ranging from slow and careful driving to fast and aggressive driving. The simulation of the interrupted flow model was implemented as two cases. The first case analyzed traffic flow as the traffic signals changed at different intervals and as the turning traffic volume changed. Second case analyzed the traffic flow as the traffic signals changed at different intervals and as the road length changed. The simulation results of the interrupted flow model showed that the close relationship between traffic state change and traffic signal interval.

Performance Analysis of Signal Acquisition in L2C Assisted GPS Receivers (L2C AGPS 수신기의 신호 획득 성능 분석)

  • Song, Seung-Hun;Park, Ji-Won;Park, Ji-Hee;Sung, Tae-Kyung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.1
    • /
    • pp.61-67
    • /
    • 2011
  • The GPS new civil signal is modulated on the L2 carrier at a frequency of 1227.6MHz. The L2C signal is composed of two multiplexed code signals, which include CM code with a 10,230 chip sequency repeating every 20ms, and CL code which has a 767,250 chip sequency repeating every 1.5 seconds. Thus, the new civil signal have much improved cross correlation properties so that the position fixing can be possible even with very weak signals. However, it requires very long acquisition time because of its long code length. This paper presents an efficient signal acquisition method for L2C AGPS receiver. Snapshot mode and coarse time assistance are assumed and total integration time is given by 1.5 sec. By SNR worksheet and computer simulation, it is proven that L2C signal can be acquired with very weak power less than -150dBm. Considering the acquisition time and the sensitivity, it is recommended that the highest power signal is acquired with CM code first to reduce TTFF. By the timing synchronization, at this time, search space of the code phase for other signals can be greatly reduced so that CL code can be used in signal acquisition to maximize sensitivity with small computation.

GPS receiver and orbit determination system on-board VSOP satellite

  • Nishimura, Toshimitsu;Harigae, Masatoshi;Maeda, Hiroaki
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10b
    • /
    • pp.1649-1654
    • /
    • 1991
  • In 1995 the VSOP satellite, which is called MUSES-B in Japan, will be launched under the VLBI Space Observatory Programme(VSOP) promoted by ISAS(Institute of Space and Astronautical Science) of Japan. We are now developing the GPS Receiver(GPSR) and On-board Orbit Determination System. This paper describes the GPS(Global Positioning System), VSOP, GPSR(GPS Receiver system) configuration and the results of the GPS system analysis. The GPSR consists of three GPS antennas and 5 channel receiver package. In the receiver package, there are two 16 bits microprocessing units. The power consumption is 25 Watts in average and the weight is 8.5 kg. Three GPS antennas on board enable GPSR to receive GPS signals from any NAVSTARs(GPS satellites) which are visible. NAVSATR's visibility is described as follows. The VSOP satellite flies from 1, 000 km to 20, 000 km in height on the elliptical orbit around the earth. On the other hand, the orbit of NAVSTARs are nearly circular and about 20, 000 km in height. GPSR can't receive the GPS signals near the apogee, because NAVSTARs transmit the GPS signals through the NAVSTAR's narrow beam antennas directed toward the earth. However near the perigee, GPSR can receive from 12 to 15 GPS signals. More than 4 GPS signals can be received for 40 minutes, which are related to GDOP(Geometric Dillusion Of Precision of selected NAVSTARs). Because there are a lot of visible NAVSTARs, GDOP is small near the perigee. This is a favorqble condition for GPSR. Orbit determination system onboard VSOP satellite consists of a Kalman filter and a precise orbit propagator. Near the perigee, the Kalman filter can eliminate the orbit propagation error using the observed data by GPSR. Except a perigee, precise onboard orbit propagator propagates the orbit, taking into account accelerations such as gravities of the earth, the sun, the moon, and other acceleration caused by the solar pressure. But there remain some amount of calculation and integration errors. When VSOP satellite returns to the perigee, the Kalman filter eliminates the error of the orbit determined by the propagator. After the error is eliminated, VSOP satellite flies out towards an apogee again. The analysis of the orbit determination is performed by the covariance analysis method. Number of the states of the onboard filter is 8. As for a true model, we assume that it is based on the actual error dynamics that include the Selective Availability of GPS called 'SA', having 17 states. Analytical results for position and velocity are tabulated and illustrated, in the sequel. These show that the position and the velocity error are about 40 m and 0.008 m/sec at the perigee, and are about 110 m and 0.012 m/sec at the apogee, respectively.

  • PDF