DOI QR코드

DOI QR Code

Real-time 14N NQR-based sodium nitrite analysis in a noisy field

  • Mohammad Saleh Sharifi (Department of Energy Engineering and Physics, Amirkabir University of Technology) ;
  • Ho Seung Song (Department of Electronic Engineering, Catholic Kwandong University) ;
  • Hossein Afarideh (Department of Energy Engineering and Physics, Amirkabir University of Technology) ;
  • Mitra Ghergherehchi (Department of Electrical and Computer Engineering, Sungkyunkwan University) ;
  • Mehdi Simiari (Tarbiat Modares)
  • Received : 2022.05.01
  • Accepted : 2023.08.23
  • Published : 2023.12.25

Abstract

Noise and Radio-frequency interference or RFI causes a significant restriction on the Free induction Decay or FID signal detection of the Nuclear Quadrupole Resonance procedure. Therefore, using this method in non-isolated environments such as industry and ports requires extraordinary measures. For this purpose, noise reduction algorithms and increasing signal-to-noise-and-interference ratio or SNIR have been used. In this research, sodium nitrite has been used as a sample and algorithms have been tested in a non-isolated environment. The resonant frequencies for the 150 g of test sample were measured at 303 K at about 1 MHz and 3.4 MHz. The main novelty in this study was, (1) using two types of antennas in the receiver to improve adaptive noise and interference cancellation, (2) using a separate helical antenna in the transmitter to eliminate the duplexer, (3) estimating the noise before sending the pulse to calculate the weighting factors and reduce the noise by adaptive noise cancellation, (3) reject the interference by blanking algorithm, (4) pulse integration in the frequency domain to increase the SNR, and (5) increasing the detection speed by new pulse integration technique. By interference rejection and noise cancellation, the SNIR is improved to 9.24 dB at 1 MHz and to 7.28 dB at 3.4 MHz, and by pulse integration 44.8 dB FID signal amplification is achieved, and the FID signals are detected at 1.057 MHz and 3.402 MHz at room temperature.

Keywords

References

  1. George Williams, Zaki Saleh, Parameswar Hari, Nuclear Quadrupole Resonance as a NonDestructive Testing Tool, 1992, https://doi.org/10.1007/978-1-4615-2848-7_86. 
  2. Cristian Monea, Nicu Bizon, Nuclear Quadrupole Resonance Spectroscopy, 2022, https://doi.org/10.1007/978-3-030-87861-0_3. 
  3. Alarich Weiss, Silvia Wigand, Correlation of NQR and chemical Bond parameter, Z. Naturforsch. 45 (1990), https://doi.org/10.1515/zna-1990-3-403. 
  4. Weihang Shao, Jamie Barras, Kaspar Althoefer, Panagiotis Kosmas, Detecting NQR signals severely polluted by interference, Signal Process. 138 (2017) 256-264, https://doi.org/10.1016/j.sigpro.2017.03.032. 
  5. Mona Ibrahim, Daniel Parrish, Tim Brown, Peter McDonald, Decision tree pattern recognition model for radio frequency interference suppression in NQR experiments, Sensors 19 (2019) 1-16, https://doi.org/10.3390/s19143153. 
  6. Junfei Yu, Jingwen Li, Bing Sun, Jie Chen, Chunsheng Li, Multiclass radio frequency interference detection and suppression for SAR based on the Single shot MultiBox detector, Sensors 18 (2018) 4034, https://doi.org/10.3390/s18114034. 
  7. Yang Lin, Zheng Huifang, Feng Jin, Ning Li, Chen Jiaqi, Detection and suppression of narrow band RFI for synthetic aperture radar imaging, Chin. J. Aeronaut. 1 (2015), https://doi.org/10.1016/j.cja.2015.06.018. 
  8. Jeremy Jover, Sarra Aissani, Laoues Guendouz, Andr'e Thomas, Daniel Canet, NQR detection of sodium nitrite recrystallized in wood, NATO Science for Peace and Security Series B: Physics and Biophysics (2015), https://doi.org/10.1007/978-94-007-7265-6-7. 
  9. Daniel Canet, Maude Ferrari, Fundamentals of Pulsed Nitrogen-14 Quadrupole Resonance, 2009, https://doi.org/10.1007/978-90-481-3062-7_1. 
  10. Sarra Aissani, Laoues Guendouz, Pierre-Louis Marande, Daniel Canet, Toward Nitrogen-14 Nuclear Quadrupole Resonance imaging by nutation experiments performed with a radio-frequency field gradient, Solid State Nucl. Magn. Reson. 84 (2016), https://doi.org/10.1016/j.ssnmr.2016.12.007. 
  11. Liyun Su, Li Deng, Wanlin Zhu, Zhao, Shengli, "detection and extraction of weak pulse signals in chaotic noise with PTAR and DLTAR models", Math. Probl Eng. (2019) https://doi.org/10.1155/2019/4842102. 
  12. Y. Silani, J. Smits, I. Fescenko, M.W. Malone, A.F. McDowell, A. Jarmola, V. M. Acosta, Nuclear Quadrupole Resonance Spectroscopy with a Femtotesla Diamond Magnetometer, 2023 arXiv preprint arXiv:2302.12401. 
  13. J. Niu, T. Su, X. He, K. Zhu, H. Wu, Weak NQR signal detection based on generalized matched filter, Procedia Eng. 7 (2010) 377-382. 
  14. A.N. Garroway, M.L. Buess, J.P. Yesinowski, J.B. Miller, March). Narcotics and explosives detection by 14N pure nuclear quadrupole resonance, Substance Detection Systems 2092 (1994) 318-327 (SPIE). 
  15. R. Siegel, Land mine detection, IEEE Instrum. Meas. Mag. 5 (4) (2002) 22-28. 
  16. M. Oproescu, G.V. Iana, C. Monea, Application of genetic algorithm for optimization of NQR signal detection, in: 2019 11th International Conference on Electronics, Computers and Artificial Intelligence (ECAI), IEEE, 2019, pp. 1-4. 
  17. P. Farantatos, J. Barras, I. Poplett, P. Kosmas, Electromagnetic Design of a Spiral Surface RF-Coil Transceiver for NQR-based explosive detection in the humanitarian demining setting, in: Proceedings of the 2018 COMSOL Conference in Lausanne, 2018, October, pp. 22-24. Lausanne, Switzerland. 
  18. M. Tachiki, Remote detection of nitrogenated substances by nuclear quadrupole resonance, Proc. of the HUDEM2005 (2005). https://cir.nii.ac.jp/crid/1574231874983574656. 
  19. N. Amor, Novel Methods and Applications of NMR and MRI: Low-Power RF Excitation and Hyperpolarized Xenon-129 (Doctoral Dissertation, Aachen, Techn, Hochsch., 2012. Diss., 2012. 
  20. S. Begus, V. Jazbinsek, J. Pirnat, Z. Trontelj, A miniaturized NQR spectrometer for a multi-channel NQR-based detection device, J. Magn. Reson. 247 (2014) 22-30. 
  21. N.V.R. Masna, J. Huan, S. Mandal, S. Bhunia, NQR sensitive embedded signatures for authenticating additively manufactured objects, Sci. Rep. 11 (1) (2021), 12207. 
  22. G. Fisher, E. MacNamara, R.E. Santini, D. Raftery, A versatile computer-controlled pulsed nuclear quadrupole resonance spectrometer, Rev. Sci. Instrum. 70 (12) (1999) 4676-4681. 
  23. E. Schempp, The Measurement of In-Situ Stress in Salt and Rock Using NQR Techniques, 1980. 
  24. Analog Devices, Inc, CMOS, 180 MHz DDS/DAC Synthesizer, "AD9851", One Technology Way, 2004. P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781/329-4700. 
  25. Analog Devices, Inc, Dual High Speed, Low Noise Op Amp, "AD8022", One Technology Way, 2011. P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781/329-4700. 
  26. M. Shams, E. Rashedi, A. Hakimi, Clustered-gravitational search algorithm and its application in parameter optimization of a low noise amplifier, Appl. Math. Comput. 258 (2015) 436-453. 
  27. minicircuits, Monolithic Amplifier, 2015. "MAR-6+", REV. D M154302, P.O. Box 350166, Brooklyn, NY 11235-0003 (718) 934-4500 sales@minicircuits.com. 
  28. B. Liang, S. Iwnicki, A. Ball, A.E. Young, Adaptive noise cancelling and time-frequency techniques for rail surface defect detection, Mech. Syst. Signal Process. 54 (2015) 41-51. 
  29. Y.K. Lee, H. Robert, D. Lathrop, Circular polarization excitation and detection in 14N NQR, J. Magn. Reson. 148 (2001) 355-362, https://doi.org/10.1006/jmre.2000.2248. San Diego, Calif.: 1997. 
  30. S.B. Yarman, Design of Ultra-wideband Antenna Matching Networks, 2008, pp. 1-4, https://doi.org/10.1109/AEMC.2007.4638051. 
  31. A. Balanis, Constantine, Antenna Theory - Analysis and Design, fourth ed., 2017, p. 270, 978-1-118- 64206-1 February 2016. 
  32. www.chem.libretexts.org/Bookshelves, Bond Energies, Last updated August 22, 2020.