• Title/Summary/Keyword: integral manifolds

Search Result 22, Processing Time 0.021 seconds

GENERALIZATION OF THE FROBENIUS THEOREM ON INVOLUTIVITY

  • Han, Chong-Kyu
    • Journal of the Korean Mathematical Society
    • /
    • v.46 no.5
    • /
    • pp.1087-1103
    • /
    • 2009
  • Given a system of s independent 1-forms on a smooth manifold M of dimension m, we study the existence of integral manifolds by means of various generalized versions of the Frobenius theorem. In particular, we present necessary and sufficient conditions for there to exist s'-parameter (s' < s) family of integral manifolds of dimension p := m-s, and a necessary and sufficient condition for there to exist integral manifolds of dimension p', p' $\leq$ p. We also present examples and applications to complex analysis in several variables.

GENERALIZED MYERS THEOREM FOR FINSLER MANIFOLDS WITH INTEGRAL RICCI CURVATURE BOUND

  • Wu, Bing-Ye
    • Bulletin of the Korean Mathematical Society
    • /
    • v.56 no.4
    • /
    • pp.841-852
    • /
    • 2019
  • We establish the generalized Myers theorem for Finsler manifolds under integral Ricci curvature bound. More precisely, we show that the forward complete Finsler n-manifold whose part of Ricci curvature less than a positive constant is small in $L^p$-norm (for p > n/2) have bounded diameter and finite fundamental group.

COMPARISON THEOREMS IN RIEMANN-FINSLER GEOMETRY WITH LINE RADIAL INTEGRAL CURVATURE BOUNDS AND RELATED RESULTS

  • Wu, Bing-Ye
    • Journal of the Korean Mathematical Society
    • /
    • v.56 no.2
    • /
    • pp.421-437
    • /
    • 2019
  • We establish some Hessian comparison theorems and volume comparison theorems for Riemann-Finsler manifolds under various line radial integral curvature bounds. As their applications, we obtain some results on first eigenvalue, Gromov pre-compactness and generalized Myers theorem for Riemann-Finsler manifolds under suitable line radial integral curvature bounds. Our results are new even in the Riemannian case.

FOLIATIONS ASSOCIATED WITH PFAFFIAN SYSTEMS

  • Han, Chong-Kyu
    • Bulletin of the Korean Mathematical Society
    • /
    • v.46 no.5
    • /
    • pp.931-940
    • /
    • 2009
  • Given a system of smooth 1-forms $\theta$ = ($\theta^1$,...,$\theta^s$) on a smooth manifold $M^m$, we give a necessary and sufficient condition for M to be foliated by integral manifolds of dimension n, n $\leq$ p := m - s, and construct an integrable supersystem ($\theta,\eta$) by finding additional 1-forms $\eta$ = ($\eta^1$,...,$\eta^{p-n}$). We also give a necessary and sufficient condition for M to be foliated by reduced submanifolds of dimension n, n $\geq$ p, and construct an integrable subsystem ($d\rho^1$,...,$d\rho^{m-n}$) by finding a system of first integrals $\rho=(\rho^1$,...,$\rho^{m-n})$. The special case n = p is the Frobenius theorem on involutivity.

SOME INTEGRAL INEQUALITIES FOR THE LAPLACIAN WITH DENSITY ON WEIGHTED MANIFOLDS WITH BOUNDARY

  • Fanqi Zeng
    • Bulletin of the Korean Mathematical Society
    • /
    • v.60 no.2
    • /
    • pp.325-338
    • /
    • 2023
  • In this paper, we derive a Reilly-type inequality for the Laplacian with density on weighted manifolds with boundary. As its applications, we obtain some new Poincaré-type inequalities not only on weighted manifolds, but more interestingly, also on their boundary. Furthermore, some mean-curvature type inequalities on the boundary are also given.

RIGIDITY CHARACTERIZATIONS OF COMPLETE RIEMANNIAN MANIFOLDS WITH α-BACH-FLAT

  • Huang, Guangyue;Zeng, Qianyu
    • Journal of the Korean Mathematical Society
    • /
    • v.58 no.2
    • /
    • pp.401-418
    • /
    • 2021
  • For complete manifolds with α-Bach tensor (which is defined by (1.2)) flat, we provide some rigidity results characterized by some point-wise inequalities involving the Weyl curvature and the traceless Ricci curvature. Moveover, some Einstein metrics have also been characterized by some $L^{\frac{n}{2}}$-integral inequalities. Furthermore, we also give some rigidity characterizations for constant sectional curvature.

ON INDEFINITE LOCALLY CONFORMAL COSYMPLECTIC MANIFOLDS

  • Massamba, Fortune;Mavambou, Ange Maloko;Ssekajja, Samuel
    • Communications of the Korean Mathematical Society
    • /
    • v.32 no.3
    • /
    • pp.725-743
    • /
    • 2017
  • We prove that there exist foliations whose leaves are the maximal integral null manifolds immersed as submanifolds of indefinite locally conformal cosymplectic manifolds. Necessary and sufficient conditions for such leaves to be screen conformal, as well as possessing integrable distributions are given. Using Newton transformations, we show that any compact ascreen null leaf with a symmetric Ricci tensor admits a totally geodesic screen distribution. Supporting examples are also obtained.