• Title/Summary/Keyword: integral Abutment

Search Result 46, Processing Time 0.018 seconds

A Simplified Numerical Model for an Integral Abutment Bridge Considering the Restraining Effects Due to Backfill

  • Hong, Jung-Hee;Jung, Jae-Ho;You, Sung-Kun;Yoon, Soon-Jong
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.5
    • /
    • pp.759-767
    • /
    • 2003
  • This paper presents the simplified but more rational analysis method for the prediction of additional internal forces induced in integral abutment bridges. These internal forces depend upon the degree of restraint provided tc the deck by the backfill soil adjacent to the abutments and piles. In addition, effect of the relative flexural stiffness ratio among pile foundations, abutment, and superstructure on the structural behavior is also an important factor. The first part of the paper develops the stiffness matrices, written in terms of the soil stiffness, for the lateral and rotational restraints provided by the backfill soil adjacent to the abutment. The finite difference analysis is conducted and it is confirmed that the results are agreed well with the predictions obtained by the proposed method. The simplified spring model is used in the parametric study on the behavior of simple span and multi-span continuous integral abutment PSC beam bridges in which the abutment height and the flexural rigidity of piles are varied. These results are compared with those obtained by loading Rankine passive earth pressure according to the conventional method. From the results of parametric study, it was shown that the abutment height, the relative flexural rigidity of superstructure and piles, and the earth pressure induced by temperature change greatly affect the overall structural response of the bridge system. It may be possible to obtain more rational and economical designs for integral abutment bridges by the proposed method.

Structural Performance Evaluation on Ended Block of Wide Flange PSC Girder for the Semi-Integral Bridges (광폭 플랜지 PSC 거더 단부 프리캐스트 블록을 활용한 반일체식교대교량의 구조성능 평가)

  • Ka, Hoon;Choi, Jin-Woo;Kim, Young-Ho;Park, Jong-Myen
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.42 no.1
    • /
    • pp.1-9
    • /
    • 2022
  • Semi-integral abutment bridges are a type of integral abutment bridges. These bridges eliminate expansion joints on the structure and can be used in situations not suitable for full-integral abutment bridge. Moreover, Semi-integral bridges have excellent maintenance and can be economically constructed. This study is about precast wall-type blocks at each end which provide lateral support for PSC girder, as well as acting as retaining walls to resist longitudinal movement of semi-integral abutment bridge. The end-diaphragm connection between ended blocks of PSC girders can be achieved by in-suit nonshrinkage concrete. The results show that 3-point experiment of end-diaphragm beam have an acceptable performance which is so better than results of structural design. Moreover, the effects of backfill soil on semi-integral abutment bridge constructed are analyzed the behavior according to the temperature changes.

Analysis and Prediction for Abutment Behavior of Prestressed Concrete Girder Integral Abutment Bridges (프리스트레스트 콘크리트 거더 일체식 교량의 교대 거동 해석과 예측)

  • Kim, Woo-Seok
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.5
    • /
    • pp.667-674
    • /
    • 2011
  • This paper discusses the analysis method of prestressed concrete girder integral abutment bridges for a 75-year bridge life and the development of prediction models for abutment displacements under thermal loading due to annual temperature fluctuation and time-dependent loading. The developed nonlinear numerical modeling methodologies considered soil-structure interaction between supporting piles and surrounding soils and between abutment and backfills. Material nonlinearity was also considered to simulate differential rotation in construction joints between abutment and backwall. Based on the numerical modeling methodologies, a parametric study of 243 analysis cases, considering five parameters: (1) thermal expansion coefficient, (2) bridge length, (3) backfill height, (4) backfill stiffness, and (5) pile soil stiffness, was performed to established prediction models for abutment displacements over a bridge life. The parametric study results revealed that thermal expansion coefficient, bridge length, and pile-soil stiffness significantly influenced the abutment displacement. Bridge length parameter significantly influenced the abutment top displacement at the centroid of the superstructure, which is similar to the free expansion analysis results. Developed prediction model can be used for a preliminary design of integral abutment bridges.

Evaluation on Behavioral Characteristics of PSC Integral Abutment Bridge (PSC 일체식 교대 교량의 거동특성 평가)

  • Ahn, Jin-Hee;Yoon, Ji-Hyun;Kim, Sang-Hyo;Kim, Jun-Hwan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.4A
    • /
    • pp.361-373
    • /
    • 2010
  • Bridges constructed without any expansion joint or bridge bearing are called integral abutment bridges. They integrate the substructure and the superstructure. Possible deformation of the superstructure, due to changes in temperature for example, is prevented by the bending of the piles placed at the lower part of the abutment. This study examines the behavior of integral abutment bridges through soil-pile interaction modeling method and proposes an appropriate modeling method. Also, it assesses the behavior characteristics of the superstructure and piles of integral abutment bridges through parametric study. Soil condition around the pile, abutment height, and pile length were selected as parameters to be analyzed. Structural analysis was conducted while considering the interactions of soil-pile and temperature change-earth pressure on the abutment. Comparative behavior analysis through soil-pile interaction modeling showed that elastic soil spring method is more appropriate in evaluating the behavior of integral abutment bridges. The parametric study showed the tendency that as the soil stiffness around the pile increases, the moment imposed on the superstructure increases, and the displacement of the piles decreases. In addition, it was observed that as the bridge height increases, the earth pressure on the abutment increases and that in turn affects the behavior of the superstructure and piles. Also, as the length of the pile increased, the integral bridge showed more flexible behavior.

Long-term Behavior of Earth Pressure on Integral Abutments (일체식 교대의 장기토압 거동)

  • Nam, Moon-S.;Park, Young-Ho
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.4
    • /
    • pp.47-58
    • /
    • 2007
  • The usage of Integral abutment bridges has been increased worldwide because of reducing bridge maintenance costs and resisting seismic loads. Although these attributes make the integral abutment bridge an increasingly popular choice, back-abutment interaction issues remain unresolved. Hence, the earth pressure behavior of an integral abutment bridge having 90 m long PSC beam bridge for the first time in Korea was analyzed by conducting long term monitoring in this study. Based on this study, the results were as follows; the ratio of maximum passive movement to the abutment height (H) of 0.0027 and the maximum passive earth pressure coefficient of 4.8 were developed at 0.82H from the bottom of the abutment during summer season. During winter season, the ratio of maximum active movement to H of 0.0011 and the maximum active earth pressure coefficient of 0.7 were developed at the same location as in summer season. The new earth pressure distributions having a trapezoid type were proposed based on this study.

Reliability-based design of prestressed concrete girders in integral Abutment Bridges for thermal effects

  • Kim, WooSeok;Laman, Jeffrey A.;Park, Jong Yil
    • Structural Engineering and Mechanics
    • /
    • v.50 no.3
    • /
    • pp.305-322
    • /
    • 2014
  • Reliability-based design limit states and associated partial load factors provide a consistent level of design safety across bridge types and members. However, limit states in the current AASHTO LRFD have not been developed explicitly for the situation encountered by integral abutment bridges (IABs) that have unique boundary conditions and loads with inherent uncertainties. Therefore, new reliability-based limit states for IABs considering the variability of the abutment support conditions and thermal loading must be developed to achieve IAB designs that achieve the same safety level as other bridge designs. Prestressed concrete girder bridges are considered in this study and are subjected to concrete time-dependent effects (creep and shrinkage), backfill pressure, temperature fluctuation and temperature gradient. Based on the previously established database for bridge loads and resistances, reliability analyses are performed. The IAB limit states proposed herein are intended to supplement current AASHTO LRFD limit states as specified in AASHTO LRFD Table 3.4.1-1.

Design and Construction of Integral Abutment Bridge (일체 구조형식 교량의 설계 및 시공기법 연구)

  • 이성우;나정우;조남훈
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1996.10a
    • /
    • pp.121-128
    • /
    • 1996
  • In this study design and construction technique for joint-less integral abutment for short to mid span bridges was developed. Expansion of superstructure due to thermal effect was absorbed in the flexible pile-type abutment in stead of expansion joint in the conventional bridges. Design method for pile subject to vertical and horizontal force was proposed. Backfill, approach slab and details of its connection joint with pavement was also proposed.

  • PDF

Integral Abutment Bridge behavior under uncertain thermal and time-dependent load

  • Kim, WooSeok;Laman, Jeffrey A.
    • Structural Engineering and Mechanics
    • /
    • v.46 no.1
    • /
    • pp.53-73
    • /
    • 2013
  • Prediction of prestressed concrete girder integral abutment bridge (IAB) load effect requires understanding of the inherent uncertainties as it relates to thermal loading, time-dependent effects, bridge material properties and soil properties. In addition, complex inelastic and hysteretic behavior must be considered over an extended, 75-year bridge life. The present study establishes IAB displacement and internal force statistics based on available material property and soil property statistical models and Monte Carlo simulations. Numerical models within the simulation were developed to evaluate the 75-year bridge displacements and internal forces based on 2D numerical models that were calibrated against four field monitored IABs. The considered input uncertainties include both resistance and load variables. Material variables are: (1) concrete elastic modulus; (2) backfill stiffness; and (3) lateral pile soil stiffness. Thermal, time dependent, and soil loading variables are: (1) superstructure temperature fluctuation; (2) superstructure concrete thermal expansion coefficient; (3) superstructure temperature gradient; (4) concrete creep and shrinkage; (5) bridge construction timeline; and (6) backfill pressure on backwall and abutment. IAB displacement and internal force statistics were established for: (1) bridge axial force; (2) bridge bending moment; (3) pile lateral force; (4) pile moment; (5) pile head/abutment displacement; (6) compressive stress at the top fiber at the mid-span of the exterior span; and (7) tensile stress at the bottom fiber at the mid-span of the exterior span. These established IAB displacement and internal force statistics provide a basis for future reliability-based design criteria development.

Numerical Study on the Behavior of Ground and Structure in Geosynthetic-Reinforced Soil (GRS) Integral Bridges

  • Sim, Youngjong;Jin, Kyu-Nam;Hong, Eun-Soo;Kim, Hansung;Park, Jun Kyung
    • Land and Housing Review
    • /
    • v.12 no.3
    • /
    • pp.97-108
    • /
    • 2021
  • In bridge abutment structures, lateral squeeze due to lateral stress of embankment placement and thermal movement of the bridge structure leads to failure of approach slabs, girders, and bridge bearings. Recently, GRS (Geosynthetic-Reinforced Soil) integral bridge has been proposed as a new countermeasure. The GRS integral bridge is a combining structure of a GRS retaining wall and an integral abutment bridge. In this study, numerical analyses which considered construction sequences and earthquake loading conditions are performed to compare the behaviors of conventional PSC (Pre-Stressed Concrete) girder bridge, traditional GRS integral bridge structure and GRS integral bridge with bracket structures (newly developed LH-type GRS integral bridge). The analysis results show that the GRS integral bridge with bracket structures is most stable compared with the others in an aspect of stress concentration and deformation on foundation ground including differential settlements between abutment and backfill. Furthermore, the GRS integral bridge with/without bracket structures was found to show the best performance in terms of seismic stability.

Design of integral abutment bridges for combined thermal and seismic loads

  • Far, Narges Easazadeh;Maleki, Shervin;Barghian, Majid
    • Earthquakes and Structures
    • /
    • v.9 no.2
    • /
    • pp.415-430
    • /
    • 2015
  • Integral abutment bridges have many advantages over bridges with expansion joints in terms of economy and maintenance costs. However, in the design of abutments of integral bridges temperature loads play a crucial role. In addition, seismic loads are readily transferred to the substructure and affect the design of these components significantly. Currently, the European and American bridge design codes consider these two load cases separately in their recommended design load combinations. In this paper, the importance and necessity of combining the thermal and seismic loads is investigated for integral bridges. A 2D finite element combined pile-soil-structure interactive model is used in this evaluation. Nonlinear behavior is assumed for near field soil behind the abutments. The soil around the piles is modeled by nonlinear springs based on p-y curves. The uniform temperature changes occurring at the time of some significant earthquakes around the world are gathered and applied simultaneously with the corresponding earthquake time history ground motions. By comparing the results of these analyses to prescribed AASHTO LRFD load combinations it is observed that pile forces and abutment stresses are affected by this new load combination. This effect is more severe for contraction mode which is caused by negative uniform temperature changes.