DOI QR코드

DOI QR Code

Long-term Behavior of Earth Pressure on Integral Abutments

일체식 교대의 장기토압 거동

  • Nam, Moon-S. (Highway & Transportation Technology Institute, Korea Expressway Corporation) ;
  • Park, Young-Ho (Highway & Transportation Technology Institute, Korea Expressway Corporation)
  • 남문석 (한국도로공사 도로교통기술원) ;
  • 박영호 (한국도로공사 도로교통기술원)
  • Published : 2007.04.30

Abstract

The usage of Integral abutment bridges has been increased worldwide because of reducing bridge maintenance costs and resisting seismic loads. Although these attributes make the integral abutment bridge an increasingly popular choice, back-abutment interaction issues remain unresolved. Hence, the earth pressure behavior of an integral abutment bridge having 90 m long PSC beam bridge for the first time in Korea was analyzed by conducting long term monitoring in this study. Based on this study, the results were as follows; the ratio of maximum passive movement to the abutment height (H) of 0.0027 and the maximum passive earth pressure coefficient of 4.8 were developed at 0.82H from the bottom of the abutment during summer season. During winter season, the ratio of maximum active movement to H of 0.0011 and the maximum active earth pressure coefficient of 0.7 were developed at the same location as in summer season. The new earth pressure distributions having a trapezoid type were proposed based on this study.

교량의 건설과 유지 비용을 줄이고 내진에도 강한 일체식 교대 교량은 전세계 뿐만아니라 우리나라에서도 그 사용량이 증가하고 있다. 하지만 일체식 교대와 뒷채움 지반의 상호작용인 토압거동에 대한 연구는 미진한 상태이다. 따라서 본 연구에서는 PSC빔 거더를 이용한 90m 3경간 연속교 형식인 일체식 교대교량을 국내 처음으로 시험시공하여 공용중에 있는 교량에 대하여 계절적인 온도변화에 따라 발생하는 교대배면 토압을 장기계측하였다. 그 결과에 의하면, 일체식 교대높이(H)에 대한 최대 평균 신장량의 비는 0.0024으로 여름철에, 그리고 일체식 교대높이에 대한 최대 평균 수축량의 비는 0.0011으로 겨울철에 발생하였다. 실측한 최대 수동토압계수과 주동토압계수의 크기는 각각 4.8과 0.7이었고, 그 위치와 형상은 교대저면으로부터 0.82H에서 작용하는 제형의 분포를 보였다. 마지막으로 본 교대의 수동과 주동 토압분포의 작도법을 제안하였다.

Keywords

References

  1. Arsoy, S. (2000), Experimental and analytical investigations of piles and abutments of integral bridges, PhD Dissertation, Virginia Polytechnic Institute and State University
  2. Burke Jr., M.P. (1993), 'The design of integral concrete bridges', Concrete International, Vol.15, June, pp.37-42
  3. Chen, Y. (1997), 'Important considerations, guidelines, and practical details of integral bridges', Journal of Engineering Technology, Vol.14, Spring 1997, pp.16-19
  4. Duncan, J.M. and Mokwa, R.L. (2001), 'Passive earth pressures: theories and tests', Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol.127(3), pp.248-257 https://doi.org/10.1061/(ASCE)1090-0241(2001)127:3(248)
  5. England, G.L., Tsang, C.M., and Bush, D. (2000), Integral Bridge ra fundamental approach to the time-temperature dependence problem, Thomas Telford, UK. ISBN 0-7277-2845-8
  6. Rowe, P.W. (1954), 'A stress-strain theory for cohesionless soil with applications to earth pressure at rest and moving walls', Geotechnique, The institution of Civil Engineers, London, Vol.4, No.2, pp.70-88
  7. Sherif, M.A., Ishibashi, I., and Lee, C.D. (1982), 'Earth pressures against rigid retaining walls', Journal of Geotechnical Engineering, ASCE, Vol.110, No.5, May, pp.679-695
  8. Terzaghi, K. (1938), 'A fundamental fallacy in earth pressure calculations', Journal of Boston Society of Civil Engineers, Boston Society of Civil Engineers, Vol.23, No.2, pp.71-88
  9. Terzaghi, K., Peck, R.B., and Mesri, G. (1996), Soil mechanics in engineering practice, 3rd ed. John Wiley and Sons, New York
  10. Thomson, Jr.T.A. and Lutenegger, A.J. (1998), 'Passive Earth Pressure Tests on Integral Bridge Abutment', Proceedings of the 4th International Conference on Case Histories in Geotechnical Engineering, pp.733-739
  11. 김팔규, 김영수, 김용진, 김용필, 김형주, 박종관, 박종현, 석종수, 송용선, 임문수, 이송, 이충래, 임충모, 정성관, 정진섭, 조재윤, 채영수 (1993), 최신토질역학상론, 동아출판사
  12. 한국도로공사 (2004), 고속도로전문시방서, 한국도로공사