• 제목/요약/키워드: intake port

검색결과 204건 처리시간 0.021초

현대 H21/32 중속 디젤엔진 실린더 헤드포트 최적화 연구 (A Study on the Optimization of Cylinder Head Port Flow for Hyundai H21/32 Medium-Speed Diesel Engines)

  • 김병윤;김진원;갈상학
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 추계학술대회논문집B
    • /
    • pp.806-811
    • /
    • 2001
  • Since the characteristics of combustion and pollutant in Diesel engines were mainly effected by the characteristics of in-cylinder gas flow and fuel spray, an understanding of those was essential to the design of the D.I. Diesel engines. The improvement of volumetric efficiency of air charging into combustion chamber is a primary requirement to obtain better mean effective pressure of an engine. Since parameters such as the air resistances in intake and exhaust flow passages, valve lift and valve shape influence greatly to the volumetric efficiency, it is very important to investigate the flow characteristics of intake and exhaust port which develops air motion in the combustion chamber. In this study, two approach methods were used for design intake and exhaust port; experiment and computation which were made by using steady flow test rig and commercial CFD code. This paper presents the results of an experimental and analytical investigation of steady flow through the prototype cylinder head ports and valves of the HHI's H21/32 HIMSEN Engine.

  • PDF

단기통 엔진 헤드에서 흡기포트의 정상유동에 관한 연구 (A Study on the Steady Flow of Intake Port in Single Cylinder Engine Head)

  • 김대열;최수광
    • 한국공작기계학회논문집
    • /
    • 제16권4호
    • /
    • pp.13-21
    • /
    • 2007
  • This paper presents characteristics of steady flow by variation of a combustion chamber and an intake port. Gas flow field inside a combustion chamber is the important factor in improving combustion stability and reduction of emission level. The flow characteristics such as flow coefficient, tumble ratio and swirl ratio are measured by the steady flow rig test with an impulse meter in this study. In the measuring, the valve lifts are varied between 1mm to 10mm. The three combustion chambers and two intake ports were applied to the steady flow apparatus in order to investigate the effect of swirl and tumble on the in-cylinder flow. As a result, tumble ratio were found to be different by variation of the combustion chambers and the intake ports. The data from the present study can be applied to design of a similar engine as basic data.

SI엔진의 정상상태 유량 특성에 관한 실험적 연구 (An Experimental Study of the Air Flow Rate Characteristics at Steady State in an SI Engine)

  • 박경석;고상근;노승탁;이종화
    • 한국자동차공학회논문집
    • /
    • 제5권6호
    • /
    • pp.1-12
    • /
    • 1997
  • In an SI engine, the characteristics of the air flow is important not only for the design of the intake system geometry but also for the accurate measurement of the induction air mass. In this study, an air flow rate measurement using the ultrasonic flow meter and hot wire flow meter was conducted at the upstream of the intake port and the throttle. At the upstream of the intake port, the pulsating flow into the cylinder affected by the pressure wave was detected directly with the flow meters instead of pressure sensors. At the upstream of the throttle, the reverse flow phenomena were showed by comparing the flow pattern measured by the hot wire air flow meter and the ultrasonic air flow meter. The results of this study can be used for the analysis of the tuning effect in the intake manifold and estimation of the error in real time measurement for the air flow rate.

  • PDF

흡기밸브 형상에 따른 3차원 유동특성 해석 (Three-dimensional Analysis of Flow Characteristics for Intake Valve Design)

  • 김득상;이상진;조용석;엄인용
    • 한국자동차공학회논문집
    • /
    • 제11권4호
    • /
    • pp.1-6
    • /
    • 2003
  • Steady flow bench test is a practical, powerful and widely used in most engine manufacturers to give a design concept of a new engine. In order to use steady data as a performance index, it is necessary to build some database, which can correlate the port characteristics with engine data. However, it is very difficult to investigate all port shapes with experimental tools. The steady flow scheme is relatively simple and its results are bulk ones such as flow rate and momentum of flow. Therefore a CFD code can be easily applied to the port evaluation. In this study, the steady flow test was simulated through three-dimensional analysis on intake port design for comparing with experimental data and confirming the feasibility of applying analytic method . for this purpose, the effect of valve curvature on flow rate was estimated by a CFD code. Numerical results were compared with those of real steady flow tests. As a result, the results of 3-D analysis were almost consistent with experimental data.

흡입밸브 각이 실린더 내 와류 발생 특성에 미치는 영향(II) (Effect of Inlet Valve Angle on In-Cylinder Swirl. Generation Characteristics(II))

  • 엄인용;박찬준
    • 한국자동차공학회논문집
    • /
    • 제17권2호
    • /
    • pp.42-48
    • /
    • 2009
  • This paper is the second of 2 companion papers which investigate in-cylinder swirl generation characteristics according to inlet valve angle. Two DOHC 4 valve engines, one has wide intake valve angle and the other has narrow valve angle, were used to compare the characteristics of swirl motion generation in the cylinder. One intake port was deactivated to induce swirl flow. A PIV (Particle Image Velocimetry) was applied to measure in-cylinder velocity field according to inlet valve angle during intake stroke. The results show that the flow patterns of narrow valve engine are much more stable and well arranged compared with the normal engine over the entire intake and compression stroke except early intake stage, and very strong swirl motion is generated at the end of compression stage in this engine nevertheless using straight port which is unfavorable for swirl generating. In the wide valve angle one, however, strong swirl motion induced during intake stroke is destroyed as the compression progresses.

단일 프레임 입자 추적법을 이용한 흡입 2밸브 가솔린 기관의 실린더 내 정상 유동 해석 (Analysis of in-cylinder steady flow for dual-intake-valve gasoline engine using single-frame particle tracking velocimetry)

  • 이창식;이기형;임경수;전문수
    • 대한기계학회논문집B
    • /
    • 제21권5호
    • /
    • pp.650-658
    • /
    • 1997
  • Analysis and control of intake charge motion such as swirl and tumble are very important factors in improving the gasoline engine performance. In this paper, single-frame PTV (particle tracking velocimetry) is used to investigate intake tumble patterns in a steady flow test rig of gasoline engine with dual-intake-valve and pent-roof combustion chamber. Intake tumble pattern is quantified in accordance with blockage ratio of TIV (tumble intensifying valve) with single- frame PTv.The view of the instantaneous 2-D velocity field gives a realistic understanding of in-cylinder flow field. Thus it is confirmed that PTV is a effective tool in engine design. In conventional port, two tumble structures appear clearly, and the larger one is observed under the exhaust valve side and the smaller is right below the intake valve side. The larger vorticity is observed in TIV port, thus it is concluded that TIV have an effect on intensified tumble motion in cylinder flow.

과급 디젤엔진에서 선회비 변경에 따른 흡기 포트유동 및 엔진성능 특성에 관한 연구 (A Study on the Characteristics of Intake Port Flow and Performance with Swirl Ratio Variance in a Turbocharged D.I. Diesel Engine)

  • 윤준규;차경옥
    • 대한기계학회논문집B
    • /
    • 제24권9호
    • /
    • pp.1185-1194
    • /
    • 2000
  • The characteristics of intake port flow and engine performance with swirl ratio variance in a turbocharged D.I. diesel engine were studied in this paper. The intake port flow is important factor which have influence on the engine performance and exhaust emission because the properties in the injected fuel depend on the combustion characteristics. Through these experiments it can be expected to satisfy performance and emission by optimizing the main parameters; the swirl ratio of intake port, injection timing and compression ratio. The swirl ratio for ports was modified by hand-working and measured by impulse swirl meter. For the effects on performance and emission, the brake torque and brake specific fuel consumption were measured by engine dynamometer, NOx and smoke were measured by gas analyzer and smoke meter. The results of steady flow test are as follows; as the valve eccentricity ratio are closed to cylinder wall, the flow coefficient and swirl intensity are increased. Also we realized that there is a trade-off that the increase of swirl ratio decreases mean flow coefficient and increases the Gulf factor. And the optimum parameters to meet performance and emission through engine test are as follows; the swirl ratio 2.43, injection timing BTDC 13oCA and compression ratio 15.5.

흡기포트 및 밸브 형상에 따른 정상 유동 특성 (Numerical analysis of flow characteristics with intake port and valve design)

  • 이상진;김성철;김득상;엄인용;조용석
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 추계학술대회논문집B
    • /
    • pp.921-927
    • /
    • 2001
  • Steady flow bench test is a practical, powerful and widely used test in most engine manufacturers to give a design concept of a new engine. In order to use steady data as a performance index, it is necessary to build some database, which can correlate the port characteristics with engine data. However, it is very hard to investigate all port and valve shapes with experimental tools. The steady flow scheme is relatively simple and its results are bulk ones such as flow rate and momentum of flow. Therefore a CFD code can be easily applied to the port evaluation. In this study, the steady flow test was simulated through two and three-dimensional analysis on intake port design for comparing with experimental data and confirming the feasibility of applying analytic method. For this purpose, the effect of valve curvature on flow rate was estimated by a CFD code. There results were compared with those of real steady flow tests. As a result, the 2-D analysis described the phenomena qualitatively well, and also the results of 3-D analysis were almost consistent with experimental data.

  • PDF

과급식 디젤엔진의 성능개선 및 배기가스 저감에 관한 실험적 연구 (An Experimental Study on the Performance Improvement and Emission Reduction in a Turbocharged D.I. Diesel Engine)

  • 윤준규;차경옥
    • 한국자동차공학회논문집
    • /
    • 제8권5호
    • /
    • pp.36-46
    • /
    • 2000
  • The performance improvement and emission reduction in a turbocharged D.I. diesel engine was studied experimentally in this paper. The system of intake port, fuel injection and turbochager are very important factors which have influence on the engine performance and exhaust emission because the properties in the injected fuel depend on the combustion characteristics. Through these experiments it can be expected to meet performance and emission by optimizing the main parameters; the swirl ratio of intake port, fuel injection system and turbocharger. The swirl ratio of intake port was modified by hand-working and measured by impulse swirl meter. Through this steady flow test, we knew that the increase of swirl ratio is decreasing the mean flow coefficient, whereas the gulf factor is increasing. And the optimum results of engine performance and emission are as follows; the swirl ratio is 2.43, injection timing is BTDC 13。 CA, compression ratio is 16, combustion bowl is re-entrant 5$^{\circ}$, nozzle hole diameter is $\Phi$0.28*6, turbocharger is GT40 model which are compressor A/R 0.58 AND turbine A/R 1.19.

  • PDF

IEEE-1394카메라와 스텝모터를 이용한 엔진 실린더헤드의 흡기포트 스월 측정 자동화에 관한 연구 (A Study on the Automatic Measurement of Swirl Generated fi:om Intake Port of Engine Cylinder Head Using an I-IEEE-1394 Camera and Step Motors)

  • 이충훈
    • 한국공작기계학회논문집
    • /
    • 제14권6호
    • /
    • pp.88-94
    • /
    • 2005
  • A swirl ratio of a charge in the cylinder could be calculated by measuring both the rotary speed of paddle and the intake air flow rate in the swirl measurement apparatus fur several positions of valve lift. The automation of the swirl ratio measurement for a cylinder head is achieved by controlling both the valve lift of cylinder head and a suction pressure of the surge tank, instead of controlling them manually. PID control of the surge tank pressure and positioning a valve lift of the cylinder head are also achieved by using two step motors, respectively. Rotating speed of a paddle are measured using an optical sensor and a counter. Flow rate are measured from ISA 1932 flow nozzle by reading a differential pressure gauge position using IEEE-1394 camera. Time to measure the swirl ratio for a port in the cylinder head is drastically reduced from an hour to 3 minutes by automation control of the apparatus.