• 제목/요약/키워드: insulin receptor signaling

검색결과 92건 처리시간 0.023초

Insulin Receptor Substrate Proteins and Diabetes

  • Lee Yong Hee;White Morris F.
    • Archives of Pharmacal Research
    • /
    • 제27권4호
    • /
    • pp.361-370
    • /
    • 2004
  • The discovery of insulin receptor substrate (IRS) proteins and their role to link cell surface receptors to the intracellular signaling cascades is a key step to understanding insulin and insulin-like growth factor (IGF) action. Moreover, IRS-proteins coordinate signals from the insulin and IGF receptor tyrosine kinases with those generated by proinflammatory cytokines and nutrients. The IRS2-branch of the insulin/IGF signaling cascade has an important role in both peripheral insulin response and pancreatic $\beta$-cell growth and function. Dysregulation of IRS2 signaling in mice causes the failure of compensatory hyperinsulinemia during peripheral insulin resistance. IRS protein signaling is down regulated by serine phosphorylation or protea-some-mediated degradation, which might be an important mechanism of insulin resistance during acute injury and infection, or chronic stress associated with aging or obesity. Under-standing the regulation and signaling by IRS1 and IRS2 in cell growth, metabolism and survival will reveal new strategies to prevent or cure diabetes and other metabolic diseases.

Insulin Receptor Substrate 1의 세린731 인산화 억제를 통한 살리실산의 인슐린저항성 개선효과 기전 (Salicylate Enhances Insulin Signaling by Preventing Ser731 Phosphorylation of Insulin Receptor Substrate 1)

  • 이용희
    • 약학회지
    • /
    • 제52권3호
    • /
    • pp.182-187
    • /
    • 2008
  • Salicylate (SA) was shown to alleviate insulin resistance. Here, we showed that SA inhibited Ser731 phosphorylation of insulin receptor substrate 1 (IRS1) and S6 kinase activation, and enhanced tyrosine phosphorylation of IRS1 in response to insulin or amino acid. Experiments using a cJun N-terminal kinase (JNK)-deficient cell and an IRS1 JNK-binding mutant showed that JNK is not required for Ser731 phosphorylation. A two-week treatment of obese mice with SA resulted in decreased Ser731 phosphorylation and enhanced insulin signaling. These results suggest that SA enhances insulin signaling by inhibiting Ser731 phosphorylation of IRS1.

Growth signaling and longevity in mouse models

  • Kim, Seung-Soo;Lee, Cheol-Koo
    • BMB Reports
    • /
    • 제52권1호
    • /
    • pp.70-85
    • /
    • 2019
  • Reduction of insulin/insulin-like growth factor 1 (IGF1) signaling (IIS) extends the lifespan of various species. So far, several longevity mouse models have been developed containing mutations related to growth signaling deficiency by targeting growth hormone (GH), IGF1, IGF1 receptor, insulin receptor, and insulin receptor substrate. In addition, p70 ribosomal protein S6 kinase 1 (S6K1) knockout leads to lifespan extension. S6K1 encodes an important kinase in the regulation of cell growth. S6K1 is regulated by mechanistic target of rapamycin (mTOR) complex 1. The v-myc myelocytomatosis viral oncogene homolog (MYC)-deficient mice also exhibits a longevity phenotype. The gene expression profiles of these mice models have been measured to identify their longevity mechanisms. Here, we summarize our knowledge of long-lived mouse models related to growth and discuss phenotypic characteristics, including organ-specific gene expression patterns.

Determination of Insulin Signaling Pathways in Hepatocytes

  • Kim, Sang-Kyum
    • Toxicological Research
    • /
    • 제21권3호
    • /
    • pp.195-208
    • /
    • 2005
  • Diabetes is a major cause of morbidity and mortality, and associated with a high risk of atherosclerosis, and liver, kidney, nerve and tissue damage. Defective insulin secretion in pancreas and/or insulin resistance in peripheral tissues is a central component of diabetes. It is well established that, regardless of the degree of muscle insulin resistance, glucose levels in diabetic and non-diabetic individuals are determined by the rate of hepatic glucose production. Moreover recently studies using liver-specific insulin receptor knockout mice show the paramount role of the liver in insulin resistance and diabetes. Insulin exerts a multifaceted and highly integrated series of actions via its intracellular signaling systems. The first major section of this review defines the major insulin-mediated signaling pathways including phosphatidylinositol 3-kinase and mitogen activated protein kinases. The second major section of the review presents a summary and evaluation of methods for determination of the role and function of signaling pathways, including methods for determination of kinase phosphorylation, the use of pharmacological inhibitors of kinase and dominant-negative kinase constructs, and the application of new RNA interference methods.

곤충 insulin-like peptide의 생리 조절 작용 (Physiological Function of Insulin-like Peptides in Insects)

  • 김두경;이재민
    • 한국응용곤충학회지
    • /
    • 제61권1호
    • /
    • pp.85-90
    • /
    • 2022
  • 인슐린(insulin)과 insulin-like growth factor-1 (IGF-1)은 척추동물에서 대사, 생장, 수명 등의 여러 생리대사를 조절하는 중요한 호르몬이다. 곤충에서도 IGF-1과 구조적으로 유사한 insulin-like peptide (ILP)들이 존재하며 이들이 곤충 생리 조절에 중요하게 관여함이 밝혀졌다. 이번 총설에서 곤충 ILP 및 초파리(Drosophila melanogaster) 유전체 분석을 통해 척추동물에 존재하는 인슐린 및 IGF-1 수용체 신호전달계와 유사하다고 확인된 ILP 수용체 신호전달계에 대해 설명하고자 한다. 추가적으로, 곤충 체내의 영양 상태에 따라 조절되는 뇌에서의 ILP의 합성과 분비, ILP에 의한 대사의 생리적 조절에 대해 논한다. 또한 ILP가 생장, 발달, 생식, 휴면에 기여하는 바도 논의하고, 마지막으로 ILP 수용체 신호전달계 제어를 통한 해충 방제에의 이용 가능성에 대해 제안하고자 한다.

Glucose Controls the Expression of Polypyrimidine Tract-Binding Protein 1 via the Insulin Receptor Signaling Pathway in Pancreatic β Cells

  • Jeong, Da Eun;Heo, Sungeun;Han, Ji Hye;Lee, Eun-young;Kulkarni, Rohit N.;Kim, Wook
    • Molecules and Cells
    • /
    • 제41권10호
    • /
    • pp.909-916
    • /
    • 2018
  • In pancreatic ${\beta}$ cells, glucose stimulates the biosynthesis of insulin at transcriptional and post-transcriptional levels. The RNA-binding protein, polypyrimidine tract-binding protein 1 (PTBP1), also named hnRNP I, acts as a critical mediator of insulin biosynthesis through binding to the pyrimidine-rich region in the 3'-untranslated region (UTR) of insulin mRNA. However, the underlying mechanism that regulates its expression in ${\beta}$ cells is unclear. Here, we report that glucose induces the expression of PTBP1 via the insulin receptor (IR) signaling pathway in ${\beta}$ cells. PTBP1 is present in ${\beta}$ cells of both mouse and monkey, where its levels are increased by glucose and insulin, but not by insulin-like growth factor 1. PTBP1 levels in immortalized ${\beta}$ cells established from wild-type (${\beta}IRWT$) mice are higher than levels in ${\beta}$ cells established from IR-null (${\beta}IRKO$) mice, and ectopic re-expression of IR-WT in ${\beta}IRKO$ cells restored PTBP1 levels. However, PTBP1 levels were not altered in ${\beta}IRKO$ cells transfected with IR-3YA, in which the Tyr1158/1162/1163 residues are substituted with Ala. Consistently, treatment with glucose or insulin elevated PTBP1 levels in ${\beta}IRWT$ cells, but not in ${\beta}IRKO$ cells. In addition, silencing Akt significantly lowered PTBP1 levels. Thus, our results identify insulin as a pivotal mediator of glucose-induced PTBP1 expression in pancreatic ${\beta}$ cells.

조골세포에서 인슐린 수용체의 세포핵으로의 이동과 타이로신 인산화 (Insulin induces nuclear translocation of insulin receptor and tyrosine phosphorylation of nuclear proteins in osteoblast)

  • Seol, Ki-Chun;Kim, Sung-Jin
    • 한국응용약물학회:학술대회논문집
    • /
    • 한국응용약물학회 2001년도 추계학술대회 및 정기총회
    • /
    • pp.101-101
    • /
    • 2001
  • In the present study, we explored to determine if insulin has any effect on the nuclear translocation of insulin receptor and tyrosine phosphoryaltion of nuclear proteins in the UMR-106 cells. Significant amount of insulin receptors and IRS-1 proteins were detected in the nucleus. IRS-1 and PI$_3$-Kinase appeared to translocate to the nucleus in a time dependent manner. Tyrosine phosphorylation of a number of proteins including 180 KDa, 85 KDa protein in the nucleus was significantly stimulated by insulin, suggesting IRS-1 and PI$_3$-Klnase was activated in the nucleus by insulin treatment. In addition, p70 S6 Kinase, a downstream target of PI3-Kinase was transiently appeared in the nucleus by insulin and its activity was stimulated by insulin. These results suggest that the insulin signaling system containing insulin receptor, IRS-1, PI$_3$-Kinase and p70 S6 Kinase operates in the nucleus of osteoblast cells. The nuclear insulin-mediated tyrosine phosphorylation may play an essential role in the gene expression, differentiation and growth of osteoblast cells.

  • PDF

Up-Regulation of RANK Expression via ERK1/2 by Insulin Contributes to the Enhancement of Osteoclast Differentiation

  • Oh, Ju Hee;Lee, Na Kyung
    • Molecules and Cells
    • /
    • 제40권5호
    • /
    • pp.371-377
    • /
    • 2017
  • Despite the importance of the receptor activator of nuclear factor (NF)-kappaB ligand (RANKL)-RANK signaling mechanisms on osteoclast differentiation, little has been studied on how RANK expression is regulated or what regulates its expression during osteoclastogenesis. We show here that insulin signaling increases RANK expression, thus enhancing osteoclast differentiation by RANKL. Insulin stimulation induced RANK gene expression in time- and dose-dependent manners and insulin receptor shRNA completely abolished RANK expression induced by insulin in bone marrow-derived monocyte/macrophage cells (BMMs). Moreover, the addition of insulin in the presence of RANKL promoted RANK expression. The ability of insulin to regulate RANK expression depends on extracellular signal-regulated kinase 1/2 (ERK1/2) since only PD98059, an ERK1/2 inhibitor, specifically inhibited its expression by insulin. However, the RANK expression by RANKL was blocked by all three mitogen-activated protein (MAP) kinases inhibitors. The activation of RANK increased differentiation of BMMs into tartrate-resistant acid phosphatase-positive ($TRAP^+$) osteoclasts as well as the expression of dendritic cell-specific transmembrane protein (DC-STAMP) and d2 isoform of vacuolar ($H^+$) ATPase (v-ATPase) Vo domain (Atp6v0d2), genes critical for osteoclastic cell-cell fusion. Collectively, these results suggest that insulin induces RANK expression via ERK1/2, which contributes to the enhancement of osteoclast differentiation.

Baicalin Improves the IL-6-Mediated Hepatic Insulin Resistance in Hepa-1c1c7 Cells

  • Chae, Byeong Suk;Oh, Chanho
    • Natural Product Sciences
    • /
    • 제19권4호
    • /
    • pp.360-365
    • /
    • 2013
  • Baicalin has antioxidant, anti-inflammatory and anti-diabetic properties. IL-6 is a primary proinflammatory cytokine that contributes to impaired insulin signaling in liver. This study was carried out to investigate whether baicalin improves IL-6-mediated insulin resistance in liver. Hepa-1c1c7 cells were pre-treated with 50 and 100 ${\mu}M$ baicalin in complete media for 1 h and then cultured in the presence or absence of IL-6 (20 ng/ml). These results demonstrated that baicalin restored IL-6-suppressed expression of insulin receptor substrate (IRS)-1 protein, downregulated IL-6-increased gene expression of C-reactive protein (CRP) and suppressor of cytokine signaling (SOCS)-3, and inhibited LPS-induced production of IL-6 in Hepa-1c1c7 cells. These findings indicate that baicalin may ameliorate hepatic insulin resistance via improvement of IL-6-mediated impaired insulin signaling in hepatocytes.

IGF-I Exerts an Anti-inflammatory Effect on Skeletal Muscle Cells through Down-regulation of TLR4 Signaling

  • Lee, Won-Jun
    • IMMUNE NETWORK
    • /
    • 제11권4호
    • /
    • pp.223-226
    • /
    • 2011
  • Although exercise-induced growth factors such as Insulin-like growth factor-I (IGF-I) are known to affect various aspects of physiology in skeletal muscle cells, the molecular mechanism by which IGF-I modulates anti-inflammatory effects in these cells is presently unknown. Here, we showed that IGF-I stimulation suppresses the expression of toll-like receptor 4 (TLR4), a key innate immune receptor. A pharmacological inhibitor study further showed that PI3K/Akt signaling pathway is required for IGF-I-mediated negative regulation of TLR4 expression. Furthermore, IGF-I treatment reduced the expression of various NF-${\kappa}B$-target genes such as TNF-${\alpha}$ and IL-6. Taken together, these findings indicate that the anti-inflammatory effect of exercise may be due, at least in part, to IGF-I-induced suppression of TLR4 and subsequent downregulation of the TLR4-dependent inflammatory signaling pathway.