DOI QR코드

DOI QR Code

Glucose Controls the Expression of Polypyrimidine Tract-Binding Protein 1 via the Insulin Receptor Signaling Pathway in Pancreatic β Cells

  • Jeong, Da Eun (Department of Molecular Science and Technology, Ajou University) ;
  • Heo, Sungeun (Department of Molecular Science and Technology, Ajou University) ;
  • Han, Ji Hye (Department of Molecular Science and Technology, Ajou University) ;
  • Lee, Eun-young (Department of Molecular Science and Technology, Ajou University) ;
  • Kulkarni, Rohit N. (Department of Islet Cell and Regenerative Biology, Joslin Diabetes Center and Department of Medicine, Harvard Medical School, and Harvard Stem Cell Institute) ;
  • Kim, Wook (Department of Molecular Science and Technology, Ajou University)
  • Received : 2018.03.28
  • Accepted : 2018.08.09
  • Published : 2018.10.31

Abstract

In pancreatic ${\beta}$ cells, glucose stimulates the biosynthesis of insulin at transcriptional and post-transcriptional levels. The RNA-binding protein, polypyrimidine tract-binding protein 1 (PTBP1), also named hnRNP I, acts as a critical mediator of insulin biosynthesis through binding to the pyrimidine-rich region in the 3'-untranslated region (UTR) of insulin mRNA. However, the underlying mechanism that regulates its expression in ${\beta}$ cells is unclear. Here, we report that glucose induces the expression of PTBP1 via the insulin receptor (IR) signaling pathway in ${\beta}$ cells. PTBP1 is present in ${\beta}$ cells of both mouse and monkey, where its levels are increased by glucose and insulin, but not by insulin-like growth factor 1. PTBP1 levels in immortalized ${\beta}$ cells established from wild-type (${\beta}IRWT$) mice are higher than levels in ${\beta}$ cells established from IR-null (${\beta}IRKO$) mice, and ectopic re-expression of IR-WT in ${\beta}IRKO$ cells restored PTBP1 levels. However, PTBP1 levels were not altered in ${\beta}IRKO$ cells transfected with IR-3YA, in which the Tyr1158/1162/1163 residues are substituted with Ala. Consistently, treatment with glucose or insulin elevated PTBP1 levels in ${\beta}IRWT$ cells, but not in ${\beta}IRKO$ cells. In addition, silencing Akt significantly lowered PTBP1 levels. Thus, our results identify insulin as a pivotal mediator of glucose-induced PTBP1 expression in pancreatic ${\beta}$ cells.

Keywords

References

  1. Assmann, A., Ueki, K., Winnay, J.N., Kadowaki, T., and Kulkarni, R.N. (2009). Glucose effects on beta-cell growth and survival require activation of insulin receptors and insulin receptor substrate 2. Mol. Cell Biol. 29, 3219-3228. https://doi.org/10.1128/MCB.01489-08
  2. Brunstedt, J., and Chan, S.J. (1982). Direct effect of glucose on the preproinsulin mRNA level in isolated pancreatic islets. Biochem. Biophys. Res. Commun. 106, 1383-1389. https://doi.org/10.1016/0006-291X(82)91267-0
  3. Dor, Y., Brown, J., Martinez, O.I., and Melton, D.A. (2004). Adult pancreatic beta-cells are formed by self-duplication rather than stemcell differentiation. Nature 429, 41-46. https://doi.org/10.1038/nature02520
  4. Folli, F., Okada, T., Perego, C., Gunton, J., Liew, C.W., Akiyama, M., D'Amico, A., La Rosa, S., Placidi, C., Lupi, R., et al. (2011). Altered insulin receptor signalling and ${\beta}$-cell cycle dynamics in type 2 diabetes mellitus. PLoS One 6, e28050. https://doi.org/10.1371/journal.pone.0028050
  5. Georgia, S., and Bhushan, A. (2004). Beta cell replication is the primary mechanism for maintaining postnatal beta cell mass. J. Clin. Invest. 114, 963-968. https://doi.org/10.1172/JCI22098
  6. German, M.S., and Wang, J. (1994). The insulin gene contains multiple transcriptional elements that respond to glucose. Mol. Cell Biol. 14, 4067-4075. https://doi.org/10.1128/MCB.14.6.4067
  7. Giddings, S.J., Chirgwin, J. and Permutt, M.A. (1982). Effects of glucose on proinsulin messenger RNA in rats in vivo. Diabetes 31, 624-629. https://doi.org/10.2337/diab.31.7.624
  8. Goodge, K.A., and Hutton, J.C. (2000). Translational regulation of proinsulin biosynthesis and proinsulin conversion in the pancreatic b-cell. Semin. Cell Dev. Biol. 11, 235-242. https://doi.org/10.1006/scdb.2000.0172
  9. Hubbard, S.R. (1997). Crystal structure of the activated insulin receptor tyrosine kinase in complex with peptide substrate and ATP analog. EMBO J. 16, 5572-5581. https://doi.org/10.1093/emboj/16.18.5572
  10. Itoh, N. and Okamoto, H. (1980). Translational control of proinsulin synthesis by glucose. Nature 283, 100-102. https://doi.org/10.1038/283100a0
  11. Kim, W., Doyle, M.E., Liu, Z., Lao, Q., Shin, Y.K., Carlson, O.D., Kim, H.S., Thomas, S., Napora, J.K., Lee, E.K., et al. (2011). Cannabinoids inhibit insulin receptor signaling in pancreatic ${\beta}$ cells. Diabetes 60, 1198-1209. https://doi.org/10.2337/db10-1550
  12. Kim, W., Lao, Q., Shin, Y.K., Carlson, O.D., Lee, E.K., Gorospe, M., Kulkarni, R.N., and Egan, J.M. (2012). Cannabinoids induce pancreatic ${\beta}$-cell death by directly inhibiting insulin receptor activation. Sci. Signal. 5, ra23.
  13. Knoch, K.P., Bergert, H., Borgonovo, B., Saeger, H.D., Altkruger, A., Verkade, P., and Solimena, M. (2004). Polypyrimidine tract-binding protein promotes insulin secretory granule biogenesis. Nat. Cell Biol. 6, 207-214. https://doi.org/10.1038/ncb1099
  14. Knoch, K.P., Meisterfeld, R., Kersting, S., Bergert, H., Altkruger, A., Wegbrod, C., Jager, M., Saeger, H.D., and Solimena, M. (2006). cAMP-dependent phosphorylation of PTB1 promotes the expression of insulin secretory granule proteins in b cells. Cell Metab. 3, 123-134. https://doi.org/10.1016/j.cmet.2005.12.008
  15. Kulkarni, R.N., Bruning, J.C., Winnay, J.N., Postic, C., Magnuson, M.A., and Kahn, C.R. (1999). Tissue-specific knockout of the insulin receptor in pancreatic beta cells creates an insulin secretory defect similar to that in type 2 diabetes. Cell 96, 329-339. https://doi.org/10.1016/S0092-8674(00)80546-2
  16. Lee, E.K., Kim, W., Tominaga, K., Martindale, J.L., Yang, X., Subaran, S.S., Carlson, O.D., Mercken, E.M., Kulkarni, R.N., Akamatsu, W., et al. (2012). RNA-binding protein HuD controls insulin translation. Mol. Cell 45, 826-835. https://doi.org/10.1016/j.molcel.2012.01.016
  17. Otani, K., Kulkarni, R.N., Baldwin, A.C., Krutzfeldt, J., Ueki, K., Stoffel, M., Kahn, C.R., and Polonsky, K.S. (2004). Reduced beta-cell mass and altered glucose sensing impair insulin-secretory function in betaIRKO mice. Am. J. Physiol. Endocrinol. Metab. 286, :E41-E49. https://doi.org/10.1152/ajpendo.00533.2001
  18. Pautz, A., Linker, K., Hubrich, T., Korhonen, R., Altenhofer, S., and Kleinert, H. (2006). The polypyrimidine tract-binding protein (PTB). is involved in the post-transcriptional regulation of human inducible nitric oxide synthase expression. J. Biol. Chem. 281, 32294-32302. https://doi.org/10.1074/jbc.M603915200
  19. Paris, M., Bernard-Kargar, C., Berthault, M.F., Bouwens, L., and Ktorza, A. (2003). Specific and combined effects of insulin and glucose on functional pancreatic beta-cell mass in vivo in adult rats. Endocrinology 144, 2717-2727. https://doi.org/10.1210/en.2002-221112
  20. Permutt, M.A. and Kipnis, D.M. (1972). Insulin biosynthesis. I. On the mechanism of glucose stimulation. J. Biol. Chem. 247, 1194-1199.
  21. Saltiel, A.R., and Kahn, C.R. (2001). Insulin signalling and the regulation of glucose and lipid metabolism. Nature 414, 799-806. https://doi.org/10.1038/414799a
  22. Sawicka, K., Bushell, M., Spriggs, K.A., and Willis, A.E. (2008). Polypyrimidine-tract-binding protein: a multifunctional RNA-binding protein. Biochem. Soc. Trans. 36, 641-647. https://doi.org/10.1042/BST0360641
  23. Tang, C.Y., Man, X.F., Guo, Y., Tang, H.N., Tang, J., Zhou, C.L., Tan, S.W., Wang, M., Zhou, H.D. (2017). IRS-2 partially compensates for the insulin signal defects in IRS-1-/- mice mediated by miR-33. Mol. Cells. 40, 123-132. https://doi.org/10.14348/molcells.2017.2228
  24. Taniguchi, C.M., Emanuelli, B., and Kahn, C.R. (2006). Critical nodes in signalling pathways: insights into insulin action. Nat. Rev. Mol. Cell Biol. 7, 85-96.
  25. Tillmar, L., and Welsh, N. (2002). Hypoxia may increase rat insulin mRNA levels by promoting binding of the polypyrimidine tract-binding protein (PTB). to the pyrimidine-rich insulin mRNA 3'-untranslated region. Mol. Med. 8, 263-272. https://doi.org/10.1007/BF03402152
  26. Tillmar, L., Carlsson, C., and Welsh, N. (2002). Control of insulin mRNA stability in rat pancreatic islets. Regulatory role of a 3'-untranslated region pyrimidine-rich sequence. J. Biol. Chem. 277, 1099-1106. https://doi.org/10.1074/jbc.M108340200
  27. Webb, G.C., Akbar, M.S., Zhao, C., and Steiner, D.F. (2000). Expression profiling of pancreatic b cells: Glucose regulation of secretory and metabolic pathway genes. Proc. Natl. Acad. Sci. USA 97, 5773-5778. https://doi.org/10.1073/pnas.100126597
  28. Welsh, M., Nielsen, D.A., MacKrell, A.J., and Steiner, D.F. (1985). Control of insulin gene expression in pancreatic beta-cells and in an insulin-producing cell line, RIN-5F cells. II. Regulation of insulin mRNA stability. J. Biol. Chem. 260, 13590-13594.
  29. Wicksteed, B., Herbert, T.P., Alarcon, C., Lingohr, M.K., Moss, L.G., and Rhodes, C.J. (2001). Cooperativity between the preproinsulin mRNA untranslated regions is necessary for glucose-stimulated translation. J. Biol. Chem. 276, 22553-22558. https://doi.org/10.1074/jbc.M011214200
  30. Withers, D.J., Gutierrez, J.S, Towery, H., Burks, D.J., Ren, J.M., Previs, S., Zhang, Y., Bernal, D., Pons, S., Shulman, G.I., et al. (1998). Disruption of IRS-2 causes type 2 diabetes in mice. Nature 391, 900-904. https://doi.org/10.1038/36116
  31. Xu, M., and Hecht, N.B. (2007). Polypyrimidine tract binding protein 2 stabilizes phosphoglycerate kinase 2 mRNA in murine male germ cells by binding to its 3' UTR. Biol. Reprod. 76, 1025-1033. https://doi.org/10.1095/biolreprod.107.060079

Cited by

  1. Roles of PTBP1 in alternative splicing, glycolysis, and oncogensis vol.21, pp.2, 2018, https://doi.org/10.1631/jzus.b1900422
  2. LncRNA-Malat1 is Involved in Lipotoxicity-Induced ß-cell Dysfunction and the Therapeutic Effect of Exendin-4 via Ptbp1 vol.161, pp.7, 2018, https://doi.org/10.1210/endocr/bqaa065