Insulin Receptor Substrate Proteins and Diabetes

  • Lee Yong Hee (Institute for Tumor Research, Chungbuk Nationai University) ;
  • White Morris F. (Hughes Medical Institute, Children's Hospital, Haward Medical School)
  • Published : 2004.04.01

Abstract

The discovery of insulin receptor substrate (IRS) proteins and their role to link cell surface receptors to the intracellular signaling cascades is a key step to understanding insulin and insulin-like growth factor (IGF) action. Moreover, IRS-proteins coordinate signals from the insulin and IGF receptor tyrosine kinases with those generated by proinflammatory cytokines and nutrients. The IRS2-branch of the insulin/IGF signaling cascade has an important role in both peripheral insulin response and pancreatic $\beta$-cell growth and function. Dysregulation of IRS2 signaling in mice causes the failure of compensatory hyperinsulinemia during peripheral insulin resistance. IRS protein signaling is down regulated by serine phosphorylation or protea-some-mediated degradation, which might be an important mechanism of insulin resistance during acute injury and infection, or chronic stress associated with aging or obesity. Under-standing the regulation and signaling by IRS1 and IRS2 in cell growth, metabolism and survival will reveal new strategies to prevent or cure diabetes and other metabolic diseases.

Keywords

References

  1. Abe, H., Yamada, N., Kamata, K., Kuwaki, T, Shimada, M., Osuga, J., Shionoiri, F., Yahagi, N., Kadowaki, T, Tamemoto, H., Ishibashi, S., Yazaki, Y., and Makuuchi, M., Hypertension, hypertriglyceridemia, and impaired endothelium-dependent vascular relaxation in mice lacking insulin receptor substrate-1, J Clin. Invest., 101, 1784-1788 (1998) https://doi.org/10.1172/JCI1594
  2. Aguirre, V., Uchida, T, Yenush, L., Davis, R. J., and White, M. F., The c-Jun $NH_{2}$-terminal kinase promotes insulin resistance during association with insulin receptor substrate-1 and phosphorylation of Ser307. J. Biol. Chem., 275, 9047-9054 (2000) https://doi.org/10.1074/jbc.275.12.9047
  3. Aguirre, V., Werner, E. D., Giraud, J., Lee, Y. H., Shoelson, S. E.; and White, M. F., Phosphorylation of ser307 in insulin receptor substrate-1 blocks interactions with the insulin receptor and inhibits insulin action. J. Bioi. Chem., 277, 1531-1537 (2002) https://doi.org/10.1074/jbc.M101521200
  4. Alessi, D. R. and Cohen, P., Mechanism of activation and function of protein kinase B. Curr. Opin. Genet. Dev., 8, 55-62 (1998) https://doi.org/10.1016/S0959-437X(98)80062-2
  5. Araki, E., Lipes, M. A., Patti, M. E., Bruning, J. C., Haag, B., III, Johnson, R. S., and Kahn, C. R., Alternative pathway of insulin signalling in mice with targeted disruption of the IRS-1 gene. Nature, 372,186-190 (1994) https://doi.org/10.1038/372186a0
  6. Aspinwall, C. A., Qian, W J., Roper, M., Kulkarni, R. N., Kahn, C. R., and Kennedy, R. T, Roles of insulin receptor substrate-1. Phosphatidylinositol 3-kinase, and release of intracellular $Ca^{2+}$ stores in insulin-stimulated insulin secretion in $\beta$-cells. J. Biol. Chem., (2000)
  7. Backer, J. M., Myers, M. G., Jr., Shoelson, S. E, Chin, D. J., Sun, X. J., Miralpeix, M., Hu, P., Margolis, B., Skolnik, E. Y., Schlessinger, J., and White, M. F., Phosphatidylinositol 3'-kinase is activated by association with IRS-1 during insulin stimulation. EMBO J., 11,3469-3479 (1992)
  8. Baker, J., Liu, J. P., Robertson, E. J., and Efstratiadis, A., Role of insulin-like growth factors in embryonic and postnatal growth. Cell, 75, 73-82 (1993) https://doi.org/10.1016/S0092-8674(05)80085-6
  9. Baron, S. H., Salicylates as hypoglycemic agents. Diabetes Care, 5, 64-71 (1982) https://doi.org/10.2337/diacare.5.1.64
  10. Baud, V. and Karin, M., Signal transduction by tumor necrosis factor and its relatives. Trends Cell Biol., 11, 372-377 (2001) https://doi.org/10.1016/S0962-8924(01)02064-5
  11. Baumann, C. A., Ribon, v., Kanzaki, M., Thurmond, D. C., Mora, S., Shigematsu, S., Bickel, P. E., Pessin, J. E., and Saltiel, A. R., CAP defines a second signalling pathway required for insulin-stimulated glucose transport [see comments]. Nature, 407, 202-207 (2000) https://doi.org/10.1038/35025089
  12. Bjornholm, M., He, A. R., Attersand, A., Lake, S., Liu, S. C., Lienhard, G. E, Taylor, S., Arner, P., and Zierath, J. R., Absence of functional insulin receptor substrate-3 (IRS-3) gene in humans. Diabetologia, 45,1697-1702 (2002) https://doi.org/10.1007/s00125-002-0945-z
  13. Brunet, A., Bonni, A., Zigmond, M. J., Lin, M. Z., Juo, P., Hu, L. S., Anderson, M. J., Arden, K. C., Blenis, J., and Greenberg, M. E., Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell, 96, 857-868 (1999) https://doi.org/10.1016/S0092-8674(00)80595-4
  14. Bruning, J. C., Michael, M. D., Winnay, J. N., Hayashi, T, Horsch, D., Accili, D., Goodyear, L. J., and Kahn, C. R., A muscle-specific insulin receptor knockout exhibits features of the metabolic syndrome of NIDDM without altering glucose tolerance. Mol. Cell, 2, 559-569 (1998) https://doi.org/10.1016/S1097-2765(00)80155-0
  15. Burghes, A. H., Vaessin, H. E and de La, C. A., Genetics. The land between Mendelian and multifactorial inheritance. Science, 293, 2213-2214 (2001) https://doi.org/10.1126/science.1065930
  16. Burks, D. J., de Mora, J. F., Schubert, M., Withers, D. J., Myers, M. G., Towery, H. H., Altamuro, S. L., Flint, C. L., and White, M. F., IRS-2 pathways integrate female reproduction and energy homeostasis. Nature, 407, 377-382 (2000) https://doi.org/10.1038/35030105
  17. Burks, D. J., Pons, S., Towery, H., Smith-Hall, J., Myers, M. G., Jr., Yenush, L., and White, M. F., Heterologous PH domains do not mediate coupling of IRS-1 to the insulin receptor. J. Biol. Chem., 272, 27716-27721 (1997) https://doi.org/10.1074/jbc.272.44.27716
  18. Burks, D. J., Wang, J., Towery, H., Ishibashi, O., Lowe, D., Riedel, H., and White, M. F., IRS pleckstrin homology domains bind to acidic motifs in proteins. J. Biol. Chem., 273, 31061-31067 (1998) https://doi.org/10.1074/jbc.273.47.31061
  19. Cai, D., Dhe-Paganon, S., Melendez, P. A., Lee, J., and Shoelson, S. E., Two new substrates in insulin signaling, IRS5/DOK4 and IRS6/DOK5. J. Biol. Chem., 278, 25323-25330 (2003) https://doi.org/10.1074/jbc.M212430200
  20. Chiang, S. H., Baumann, C. A., Kanzaki, M., Thurmond, D. C., Watson, R. T, Neudauer, C. L., Macara, I. G., Pessin, J. E, and Saltiel, A. R., Insulin-stimulated GLUT4 translocation requires the CAP-dependent activation of TC10. Nature, 410,944-948 (2001) https://doi.org/10.1038/35073608
  21. Cline, G. W, Rothman, D. L., Magnusson, I., Katz, L. D., and Shulman, G. I., $^{13}C$-nuclear magnetic resonance spectroscopy studies of hepatic glucose metabolism in normal subjects and subjects with insulin-dependent diabetes mellitus. J. Clin.lnvest., 94, 2369-2376 (1994) https://doi.org/10.1172/JCI117602
  22. DeFronzo, R. A., Pathogenesis of type 2 diabetes: Metabolic and molecular implications for identifying diabetes genes. Diabetes Rev., 5, 177-269 (1997)
  23. DeFronzo, R. A. and Ferrannini, E., Regulation of intermediary metabolism during fasting and feeding, In DeGroot, L.J. and Jameson, J.L. (Eds.). Endocrinology. WB. Saunders Co., Philadelphia, pp. 737-755, (2001)
  24. Dudek, H., Datta, S. R., Franke, T. F., Birnbaum, M. J., Yao, R., Cooper, G. M., Segal, R. A., Kaplan, D. R., and Greenberg, M. E, Regulation of neuronal survival by the serine-threonine protein kinase Akt. Science, 275, 661-665 (1997) https://doi.org/10.1126/science.275.5300.661
  25. Ebina, Y, Ellis, L., Jarnagin, K., Edery, M., Graf, L., Clauser, E, Ou, J.-H., Masiar, F., Kan, Y w., Goldfine, I. D., Roth, R. A., and Rutter, W. J., The human insulin receptor cDNA: The structural basis for hormone activated transmembrane signalling. Cell, 40,747-758 (1985) https://doi.org/10.1016/0092-8674(85)90334-4
  26. Farhang-Fallah, J., Yin, X., Trentin, G., Cheng, A. M., and Rozakis-Adcock, M., Cloning and characterization of PHIP, a novel insulin receptor substrate-1 pleckstrin homology domain interacting protein. J. Biol. Chem., 275, 40492-40497 (2000) https://doi.org/10.1074/jbc.C000611200
  27. Frasca, F., Pandini, G., Scalia, P., Sciacca, L., Mineo, R., Costantino, A., Goldfine, I. D., Belfiore, A., and Vigneri, R., Insulin receptor isoform A, a newly recognized, high-affinity insulin-like growth factor II receptor in fetal and cancer cells. Mol. Cell Biol., 19,3278-3288 (1999) https://doi.org/10.1128/MCB.19.5.3278
  28. Fruebis, J., Tsao, T. S., Javorschi, S., Ebbets-Reed, D., Erickson, M. R., Yen, F. T., Bihain, B. E., and Lodish, H. F., Proteolytic cleavage product of 30-kDa adipocyte complement-related protein increases fatty acid oxidation in muscle and causes weight loss in mice. Proc. Natl. Acad. Sci. U.S.A., 98, 2005-2010 (2001) https://doi.org/10.1073/pnas.041591798
  29. Hellstrom, A., Perruzzi, C., Ju, M., Engstrom, E., Hard, A. L., Liu, J. L., Albertsson-Wikland, K., Carlsson, B., Niklasson, A., Sjodell, L., LeRoith, D., Senger, D. R., and Smith, L. E., Low IGF-I suppresses VEGF-survival signaling in retinal endothelial cells: direct correlation with clinical retinopathy of prematurity. Proc. Nat!. Acad. Sci. U.S.A., 98, 5804-5808 (2001) https://doi.org/10.1073/pnas.101113998
  30. Hirosumi, J., Tuncman, G., Chang, L., Gorgun, C. Z., Uysal, K. T., Maeda, K., Karin, M., and Hotamisligil, G. S., A central role for JNK in obesity and insulin resistance. Nature, 420, 333-336 (2002) https://doi.org/10.1038/nature01137
  31. Horikawa, Y, Oda, N., Cox, N. J., Li, X., Orho-Melander, M., Hara, M., Hinokio, Y, Lindner, T. H., Mashima, H., Schwarz, P. E., Bosque-Plata, L., Horikawa, Y, Oda, Y, Yoshiuchi, I., Colilla, S., Polonsky, K. S., Wei, S., Concannon, P., Iwasaki, N., Schulze, J., Baier, L. J., Bogardus, C., Groop, L., Boerwinkle, E, Hanis, C. L., and Bell, G. I., Genetic variation in the gene encoding calpain-10 is associated with type 2 diabetes mellitus. Nat. Genet., 26,163-175 (2000) https://doi.org/10.1038/79876
  32. Hotamisligil, G. S., Peraldi, P., Budvari, A., Ellis, R. W., White, M. F., and Spiegelman, B. M., IRS-1 mediated inhibition of insulin receptor tyrosine kinase activity in TNF-$\alpha$-and obesity-induced insulin resistance. Science, 271,665-668 (1996) https://doi.org/10.1126/science.271.5249.665
  33. Hotamisligil, G. S. and Spiegelman, B. M., Adipose expression of TNF$\alpha$:Direct Role in Obesity-linked insulin resistance. Science, 259, 87-91 (1999) https://doi.org/10.1126/science.7678183
  34. Kadowaki, T., Tamemoto, H., Tobe, K., Terauchi, Y, Ueki, K., Kaburagi, Y, Yamauchi, T., Satoh, S., Sekihara, H., Aizawa, S., and Yazaki, Y, Insulin resistance and growth retardation in mice lacking insulin receptor substrate-1 and identification of insulin receptor substrate-2. Diabet. Med., 13, S103-S108 (1996)
  35. Kahn, B. B. and Flier, J. S., Obesity and insulin resistance. J. Clin. Invest., 106,473-481 (2000) https://doi.org/10.1172/JCI10842
  36. Kim, J. K., Kim, Y. J., Fillmore, J. J., Chen, Y, Moore, I., Lee, J., Yuan, M., Li, Z. W., Karin, M., Perret, P., Shoelson, S. E., and Shulman, G. I., Prevention of fat-induced insulin resistance by salicylate. J. Clin. Invest., 108, 437-446 (2001) https://doi.org/10.1172/JCI11559
  37. Kitamura, T., Nakae, J., Kitamura, Y, Kido, Y, Biggs, W. H., III, Wright, C. V., White, M. F., Arden, K. C., and Accili, D., The forkhead transcription factor Foxo1 links insulin signaling to Pdx1 regulation of pancreatic beta cell growth. J. Clin. Invest., 110, 1839-1847 (2002) https://doi.org/10.1172/JCI200216857
  38. Kops, G. J. and Burgering, B. M., Forkhead transcription factors are targets of signalling by the proto- oncogene PKB (C-AKT). J. Anat., 197 Pt4, 571-574 (2000)
  39. Kotani, K., Wilden, P., and Pillay, T. S., SH2-Balpha is an insulin-receptor adapter protein and substrate that interacts with the activation loop of the insulin-receptor kinase. Biochem. J., 335, 103-109 (1998) https://doi.org/10.1042/bj3350103
  40. Kuan, C. Y., Yang, D. D., Samanta Roy, D. R., Davis, R. J., Rakic, P., and Flavell, R. A., The Jnk1 and Jnk2 protein kinases are required for regional specific apoptosis during early brain development. Neuron, 22, 667-676 (1999) https://doi.org/10.1016/S0896-6273(00)80727-8
  41. Kulkarni, R. N., Bruning, J. C., Winnay, J. N., Postic, C., Magnuson, M. A., and Kahn, C. R., Tissue-specific knockout of the insulin receptor in pancreatic b cells creates an insulin secretory defect similar to that in Type 2 diabetes. Cell, 96, 329-339 (1999) https://doi.org/10.1016/S0092-8674(00)80546-2
  42. Kushner, J. A., Ye, J., Schubert, M., Burks, D. J., Dow, M. A., Flint, C. L., Dutta, S., Wright, C. V., Montminy, M. R., and White, M. F., Pdx1 restores beta cell function in Irs2 knockout mice. J. Clin.lnvest., 109, 1193-1201 (2002) https://doi.org/10.1172/JCI0214439
  43. Lavan, B. E., Lane, W. S., and Lienhard, G. E., The 60-kDa phosphotyrosine protein in insulin-treated adipocytes is a new member of the insulin receptor substrate family. J. Biol. Chem., 272,11439-11443 (1997) https://doi.org/10.1074/jbc.272.17.11439
  44. Lee, Y H., Giraud, J., Davis, R. J., and White, M. F., c-Jun N-terminal kinase (JNK) mediates feedback inhibition of the insulin signaling cascade. J. Biol. Chem., 278, 2896-2902 (2003) https://doi.org/10.1074/jbc.M208359200
  45. Liu, J. P., Baker, J., Perkins, J. A., Robertson, E. J., and Efstratiadis, A., Mice carrying null mutations of the genes encoding insulin-like growth factor I (Igf-1) and type 1 IGF receptor (lgf1r). Cell, 75, 59-72 (1993)
  46. Lock, P., Casagranda, F., and Dunn, A. R., Independent SH2-binding sites mediate interaction of Dok-related protein with RasGTPase-activating protein and Nck. J. Biol. Chem., 274, 22775-22784 (1999) https://doi.org/10.1074/jbc.274.32.22775
  47. Lupu, F., Terwilliger, J. D., Lee, K., Segre, G. V., and Efstratiadis, A., Roles of growth hormone and insulin-like growth factor 1 in mouse postnatal growth. Dev. Biol., 229, 141-162 (2001) https://doi.org/10.1006/dbio.2000.9975
  48. Merforth, S., Osmers, A., and Dahlmann, B., Alterations of proteasome activities in skeletal muscle tissue of diabetic rats. Mol. Biol. Rep., 26, 83-87 (1999) https://doi.org/10.1023/A:1006966005662
  49. Mitch, W E., Bailey, J. L., Wang, X., Jurkovitz, C., Newby, D., and Price, S. R, Evaluation of signals activating ubiquitinproteasome proteolysis in a model of muscle wasting. Am. J. Physiol, 276, C1132-C1138 (1999) https://doi.org/10.1152/ajpcell.1999.276.5.C1132
  50. Nakae, J., Kitamura, T, Kitamura, Y, Biggs, W H., III, Arden, K. C., and Accili, D., The forkhead transcription factor Foxo1 regulates adipocyte differentiation. Dev. Cell, 4, 119-129 (2003) https://doi.org/10.1016/S1534-5807(02)00401-X
  51. Noguchi, T, Matozaki, T, Inagaki, K., Tsuda, M., Fukunaga, K., Kitamura, Y, Kitamura, T, Shii, K., Yamanashi, Y, and Kasuga, M., Tyrosine phosphorylation of p62(Dok) induced by cell adhesion and insulin: possible role in cell migration. EMBO J., 18, 1748-1760 (1999) https://doi.org/10.1093/emboj/18.7.1748
  52. O'Brien, R M., Streeper, R S., Ayala, J. E., Stadelmaier, B. T, and Hornbuckle, L. A., Insulin-regulated gene expression. Biochem. Soc. Trans., 29, 552-558 (2001) https://doi.org/10.1042/BST0290552
  53. Patti, M. E., Sun, X. J., Bruning, J. C., Araki, E., Lipes, M. A., White, M. F, and Kahn, C. R, 4PS/IRS-2 is the alternative substrate of the insulin receptor in IRS-1 deficient mice. J. Biol. Chem., 270, 24670-24673 (1995) https://doi.org/10.1074/jbc.270.42.24670
  54. Pawson, T. and Scott, J. D., Signaling through scaffold, anchoring, and adaptor proteins. Science, 278, 2075-2080 (1997) https://doi.org/10.1126/science.278.5346.2075
  55. Peraldi, P., Hotamisligil, G. S., Buurman, W. A., White, M. F., and Spiegelman, B. M., Tumor necrosis factor (TNF)-$\alpha$ inhibits insulin signaling through stimulation of the p55 TNF receptor and activation of sphingomyelinase. J. Biol. Chem., 271, 13018-13022 (1996) https://doi.org/10.1074/jbc.271.22.13018
  56. Pessin, J. E. and Saltiel, A. R, Signaling pathways in insulin action: molecular targets of insulin resistance. J. Clin. Invest., 106, 165-169 (2000) https://doi.org/10.1172/JCI10582
  57. Pete, G., Fuller, C. R, Oldham, J. M., Smith, D. R, D'Ercole, A. J., Kahn, C. R., and Lund, P. K., Postnatal growth responses to insulin-like growth factor I in insulin receptor substrate-1-deficient mice. Endocrinology, 140, 5478-5487 (1999) https://doi.org/10.1210/en.140.12.5478
  58. Previs, S. F, Withers, D. J., Ren, J. M., White, M. F, and Shulman, G. I., Contrasting effects of IRS-1 vs IRS-2 gene disruption on carbohydrate and lipid metabolism in vivo. J. Bioi. Chern., 275, 38990-38994 (2000) https://doi.org/10.1074/jbc.M006490200
  59. Puigserver, P., Rhee, J., Donovan, J., Walkey, C. J., Yoon, J. C., Oriente, F, Kitamura, Y., Altomonte, J., Dong, H., Accili, D., and Spiegelman, B. M., Insulin-regulated hepatic gluconeogenesis through FOXO1-PGC-1alpha interaction. Nature, (2003)
  60. Reaven, G. M., Banting lecture: Role of insulin resistance in human disease. Diabetes, 37, 1595-1607 (1988) https://doi.org/10.2337/diabetes.37.12.1595
  61. Rincon, M., Whitmarsh, A., Yang, D. D., Weiss, L., Derijard, B., Jayaraj, P, Davis, R J., and Flavell, R A., The JNK pathway regulates the In vivo deletion of immature CD4(+)CD8(+) thymocytes. J. Exp. Med., 188, 1817-1830 (1998) https://doi.org/10.1084/jem.188.10.1817
  62. Rohl, M., Pasparakis, M., Baudler, S., Baumgartl, J., Gautam, D., Huth, M., De Lorenzi, R., Krone, W., Rajewsky, K. and Bruning, J. C., Conditional disruption of $I{\kappa}B$ kinase 2 fails to prevent obesity-induced insulin resistance. J. Clin. Invest., 113, 474-481 (2004) https://doi.org/10.1172/JCI200418712
  63. Rui, L., Fisher, T. L., Thomas, J., and White, M. F, Regulation of insulin/insulin-like growth factor-1 signaling by proteasomemediated degradation of insulin receptor substrate-2. J. Biol. Chem., 276, 40362-40367 (2001) https://doi.org/10.1074/jbc.M105332200
  64. Saltiel, A. R, New perspectives into the molecular pathogenesis and treatment of type 2 diabetes. Cell, 104, 517-529 (2001) https://doi.org/10.1016/S0092-8674(01)00239-2
  65. Savkur, R S., Philips, A. V. and Cooper, T. A., Aberrant regulation of insulin receptor alternative splicing is associated with insulin resistance in myotonic dystrophy. Nat. Genet., 29, 40-47 (2001)
  66. Schubert, M., Brazil, D. P., Burks, D. J., Kushner, J. A., Ye, J., Flint, C. L., Farhang-Fallah, J., Dikkes, P., Warot, X. M., Rio, C., Corfas, G., and White, M. F, Insulin receptor substrate-2 deficiency impairs brain growth and promotes tau phosphorylation. J. Neurosci., 23, 7084-7092 (2003)
  67. Shulman, G. I., Cellular mechanisms of insulin resistance. J. Clin. Invest., 106, 171-176 (2000) https://doi.org/10.1172/JCI10583
  68. Sreenan, S. K., Zhou, Y. P., Otani, K., Hansen, P. A., Currie, K. P., Pan, C. Y, Lee, J. P., Ostrega, D. M., Pugh, W, Horikawa, Y, Cox, N. J., Hanis, C. L., Burant, C. F, Fox, A. P., Bell, G. I., and Polonsky, K. S., Calpains play a role in insulin secretion and action. Diabetes, 50, 2013-2020 (2001)
  69. Sun, X. J., Goldberg, J. L., Qiao, L. Y., and Mitchell, J. J., Insulininduced insulin receptor substrate-1 degradation is mediated by the proteasome degradation pathway. Diabetes, 48, 1359-1364 (1999) https://doi.org/10.2337/diabetes.48.7.1359
  70. Tamemoto, H., Kadowaki, T., Tobe, K., Yagi, T., Sakura, H., Hayakawa, T., Terauchi, Y., Ueki, K., Kaburagi, Y, Satoh, S., Sekihara, H., Yoshioka, S., Horikoshi, H., Furuta, Y, Ikawa, Y, Kasuga, M., Yazaki, Y, and Aizawa, S., Insulin resistance and growth retardation in mice lacking insulin receptor substrate-1. Nature, 372, 182-186 (1994) https://doi.org/10.1038/372182a0
  71. Thomas, M. K., Devon, O. N., Lee, J. H., Peter, A., Schlosser, D. A., Tenser, M. S., and Habener, J. F., Development of diabetes mellitus in aging transgenic mice following suppression of pancreatic homeoprotein IDX-1. J. Clin. Invest., 108,319-329 (2001) https://doi.org/10.1172/JCI200112029
  72. Uchida, T., Myers, M. G., Jr., and White, M. F, IRS-4 mediates activation of PKB/Akt during insulin stimulation without inhibition of apoptosis. Mol. Cell Biol., 20,126-138 (2000)
  73. Ullrich, A., Bell, J. R., Chen, E. Y., Herrera, R., Petruzzelli, L. M., Dull, T J., Gray, A., Coussens, L., Liao, Y. C., Tsubokawa, M., Mason, A., Seeburg, P.H., Grunfeld, C., Rosen, O. M., and Ramachandran, J., Human insulin receptor and its relationship to the tyrosine kinase family of oncogenes. Nature, 313, 756-761 (1985) https://doi.org/10.1038/313756a0
  74. Uysal, K. T., Wiesbrock, S. M., and Hotamisligil, G. S., Functional analysis of tumor necrosis factor (TNF) receptors in TNF-alpha-mediated insulin resistane in genetic obesity. Endocrinology, 139,4832-4838 (1998) https://doi.org/10.1210/en.139.12.4832
  75. Uysal, K. T, Wiesbrock, S. M., Marino, M. W., and Hotamisligil, G. S., Protection from obesity-induced insulin resistance in mice lacking TNF-$\alpha$ function. Nature, 389, 610-614 (1997) https://doi.org/10.1038/39335
  76. White, M. F, Insulin signaling in health and disease. Science, 302,1710-1711 (2003) https://doi.org/10.1126/science.1092952
  77. White, M. F, Shoelson, S. E., Keutmann, H. and Kahn, C. R., A cascade of tyrosine autophosphorylation in the b-subunit activates the insulin receptor. J. Biol. Chem., 263, 2969-2980 (1988)
  78. Withers, D. J., Burks, D. J., Towery, H. H., Altamuro, S. L., Flint, C. L., and White, M. F., Irs-2 coordinates Igf-1 receptormediated beta-cell development and peripheral insulin signalling. Nat. Genet., 23, 32-40 (1999)
  79. Withers, D. J., Gutierrez, J. S., Towery, H., Burks, D. J., Ren, J. M., Previs, S., Zhang, Y., Bernal, D., Pons, S., Shulman, G. I., Bonner-Weir, S., and White, M. F, Disruption of IRS-2 causes type 2 diabetes in mice. Nature, 391, 900-904 (1998) https://doi.org/10.1038/36116
  80. Wolf, G., Trub, T, Ottinger, E., Groninga, L., Lynch, A., White, M. F., Miyazaki, M., Lee, J., and Shoelson, S. E., The PTB domains of IRS-1 and Shc have distinct but overlapping specificities. J. Biol. Chem., 270, 27407-27410 (1995) https://doi.org/10.1074/jbc.270.46.27407
  81. Yamauchi, T., Tobe, K., Tamemoto, H., Ueki, K., Kaburagi, Y., Yamamoto-Handa, R., Takahadhi, Y., Yoshizawa, F, Aizawa, S., Akanuma, Y., Sonenberg, N., Yazaki, Y., and Kadowaki, T, Insulin signaling and insulin actions in the muscles and livers of insulin-resistant, insulin receptor substrate 1-deficient mice. Mol. Cell Biol., 16,3074-3084 (1996) https://doi.org/10.1128/MCB.16.6.3074
  82. Yenush, L. and White, M. F., The IRS-signaling system during insulin and cytokine action. Bio. Essays, 19,491-500 (1997) https://doi.org/10.1002/bies.950190608
  83. Yenush, L., Zanella, C., Uchida, T, Bernal, D., and White, M. F, The pleckstrin homology and phosphotyrosine binding domains of insulin receptor substrate 1 mediate inhibition of apoptosis by insulin. Mol. Cell Bioi., 18,6784-6794 (1998) https://doi.org/10.1128/MCB.18.11.6784
  84. Yuan, M., Konstantopoulos, N., Lee,-J., Hansen, L., Li, Z. W., Karin, M., and Shoelson, S. E., Reversal of obesity- and dietinduced insulin resistance with salicylates or targeted disruption of Ikkbeta. Science, 293, 1673-1677 (2001) https://doi.org/10.1126/science.1061620
  85. Yuasa, T, Ohno, S., Kehrl, J. H., and Kyriakis, J. M., Tumor necrosis factor signaling to stress-activated protein kinase (SAPK)/Jun NH2-terminal kinase (JNK) and p38. Germinal center kinase couples TRAF2 to mitogen-activated protein kinase/ERK kinase kinase 1 and SAPK while receptor interacting protein associates with a mitogen-activated protein kinase kinase kinase upstream of MKK6 and p38. J. Biol. Chem., 273, 22681-22692 (1998) https://doi.org/10.1074/jbc.273.35.22681