• Title/Summary/Keyword: insulating glass

Search Result 99, Processing Time 0.024 seconds

FINITE ELEMENT ANALYSIS OF STRESS AND TEMPERATURE DISTRIBUTION AFFECTED BY VARIOUS RESTORATIVE AND BASE MATERIAL (수복재와 이장재에 따른 응력과 온도 분포의 유한 요소 분석)

  • Lee, Jae-young;Oh, Tae-Suk;Lim, Sung-Sam
    • Restorative Dentistry and Endodontics
    • /
    • v.25 no.3
    • /
    • pp.321-337
    • /
    • 2000
  • Dental caries, one of the most frequent dental disease, become larger because it can be thought as a simple disease. Further more, it can progress to unexpected root canal therapy with fabrication of crown that needs reduction of tooth structure. Base is required in a large caries and ZOE, ZPC, glass ionomer are used frequently as base material. They, with restorative material, can affect the longevity of the restoration. In this study, we assume that the mandibular 1st molar has deep class I cavity. So, installing the 3 base material, 3 kinds of fillings were restored over the base as follows; 1) amalgam only, 2) amalgam with ZPC, 3) amalgam with ZOE, 4) amalgam with GI cement, 5) gold inlay with ZPC, 6) gold inlay with GI cement, 7) composite resin only, 8) composite resin with GI cement. After develop the 3-dimensional model for finite element analysis, we observe the distribution of stress and temperature with force of 500N to apical direction at 3 point on occlusal surface and temperature of 55 degree, 15 degree on entire surface. The analyzed results were as follow : 1. Principal stress produced at the interface of base, dentin, cavity wall was smallest in case of using GI cement as base material under the amalgam. 2. Principal stress produced at the interface of base, dentin, cavity wall was smaller in case of using GI cement as a base material than ZPC under gold inlay. 3. Composite resin-filled tooth showed stress distributed over entire tooth structure. In other words, there was little concentration of stress. 4. ZOE was the most effective base material against hot stimuli under the amalgam and GI cement was the next. In case of gold inlay, GI cement was more effective than ZPC. 5. Composite resin has the small coefficient of thermal conductivity. So, composite resin filling is the most effective insulating material.

  • PDF

A Characteristic Study of Inorganic Insulation Using Balloon Pearlite (발룬 펄라이트를 사용한 무기단열재의 특성 연구)

  • Jeon, Chanki;Park, Jongpil;Chung, Hoon;Lee, Jaeseong;Shim, jaeyeong
    • Journal of the Society of Disaster Information
    • /
    • v.12 no.3
    • /
    • pp.292-299
    • /
    • 2016
  • The insulation in buildings is very important. Insulation used in the building is largely divided into organic and inorganic insulation by its insulation material. Organic insulations material which are made of styrofoam or polyurethane are extremely vulnerable to fire. On the other hand, inorganic insulation such as mineral-wool and glass-wool are very week with moisture while they are non-flammable so that its usage is very limited. In this study, inorganic heat insulating material developed and the properties of thermal conductivity evaluated. The thermal conductivity and the water absorption of the sample in less than 50mm thickness of the board is less than 0.05W/mk, 3.0%. Bending strength and the water repellency is more than $25N/cm^2$, 98%.

a-Si:H TFT Using Ferroelectrics as a Gate Insulator

  • Hur, Chang-Wu;Kung Sung;Jung-Soo, Youk;Sangook Moon;Kim, Jung-Tae
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2004.05a
    • /
    • pp.53-56
    • /
    • 2004
  • The a-Si:H TFT using ferroelectric of SrTi $O_3$as a gate insulator is fabricated on glass. Dielectric characteristics of ferroelectric are superior to $SiO_2$and S $i_3$ $N_4$. Ferroelctric increases on-current, decreases thresh old voltage of TFT and also improves breakdown characteristics. The a-SiN:H has optical band gap of 2.61 eV, refractive index of 1.8~2.0 and resistivity of 10$^{13}$ - 10$^{15}$ $\Omega$cm, respectively. Insulating characteristics of ferroelectrics are excellent because dielectric constant of ferroelectric is about 60~100 and breakdown strength is over 1MV/cm. TFT using ferroelectric has channel length of 8~20${\mu}{\textrm}{m}$ and channel width of 80~200${\mu}{\textrm}{m}$. And it shows that drain current is 3.4$mutextrm{A}$ at 20 gate voltage, $I_{on}$ / $I_{off}$ is a ratio of 10$^{5}$ - 10$^{8}$ and $V_{th}$ is 4~5 volts, respectively. In the case of TFT without ferroelectric, it indicates that the drain current is 1.5 $mutextrm{A}$ at 20 gate voltage and $V_{th}$ is 5~6 volts. With the improvement of the ferroelectric thin film properties, the performance of TFT using this ferroelectric has advanced as a gate insulator fabrication technology is realized.zed.d.

  • PDF

A Study on the Characteristics of Low Temperature sintering Ceramic Siding Using Natural Minerals (천연광물을 활용한 저온소결 세라믹 사이딩의 특성에 관한 연구)

  • Kim, Soon-ho;Choi, Jeong-min
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.35 no.12
    • /
    • pp.149-156
    • /
    • 2019
  • Recently, skyscraper building and apartment fires, which were rapidly spread out from a low floor to a rooftop, have become a frequent occurrence in mass media. This fire problems have a fatal disadvantage that the exterior wall finish of the building emits toxic gas in case of fire by using dry bit method or organic insulating material. Therefore, in order to remedy these problems, many exterior wall finishing construction methods have been proposed, but the current trend is to use existing construction methods due to problems such as economy, weight, and durability. On the other hand, in countries such as Germany and Japan, ceramic sidings are used as exterior finishing material for buildings, which is environmentally friendly, excellent natural beauty, long life, easy maintenance and high-quality exterior materials. However, those ceramic sidings have still the problems such as manufacturing cost and weight problem because of boosting the sintering temperature up to 1,350℃ or more. Also, conventional CRC, MgO, FRP sidings which are composed of pulp, glass fiber and organic materials, have been reports of deformation due to ultraviolet rays, discoloration, corrosion and scattering, surface rupture, lifting and peeling. Therefore, in this study as an alternative to solve this problem, halosite nano kaolin produced in Sancheong in Korea and frit flux were used to satisfy the required properties as ceramic siding using low temperature sintering (below 1,000℃) and lightweight materials such as pearlite. This study aims to design the optimal formulation and process of materials and to study the characteristics of nano-coated ceramic siding material development and to present relevant basic data. The findings show that ceramic siding for nanocoated building materials is excellent as a natural ceramic siding building material. The fire resistance of natural minerals and nano particle refining technology satisfy the bending strength of 80kgf / cm2, the volume ratio of 2.0 and the absorption rate of less than 10.0%.

Carbon nanotube field emission display

  • Chil, Won-Bong;Kim, Jong-Min
    • Electrical & Electronic Materials
    • /
    • v.12 no.7
    • /
    • pp.7-11
    • /
    • 1999
  • Fully sealed field emission display in size of 4.5 inch has been fabricated using single-wall carbon nanotubes-organic vehicle com-posite. The fabricated display were fully scalable at low temperature below 415$^{\circ}C$ and CNTs were vertically aligned using paste squeeze and surface rubbing techniques. The turn-on fields of 1V/${\mu}{\textrm}{m}$ and field emis-sion current of 1.5mA at 3V/${\mu}{\textrm}{m}$ (J=90${\mu}{\textrm}{m}$/$\textrm{cm}^2$)were observed. Brightness of 1800cd/$m^2$ at 3.7V/${\mu}{\textrm}{m}$ was observed on the entire area of 4.5-inch panel from the green phosphor-ITO glass. The fluctuation of the current was found to be about 7% over a 4.5-inch cath-ode area. This reliable result enables us to produce large area full-color flat panel dis-play in the near future. Carbon nanotubes (CNTs) have attracted much attention because of their unique elec-trical properties and their potential applica-tions [1, 2]. Large aspect ratio of CNTs together with high chemical stability. ther-mal conductivity, and high mechanical strength are advantageous for applications to the field emitter [3]. Several results have been reported on the field emissions from multi-walled nanotubes (MWNTs) and single-walled nanotubes (SWNTs) grown from arc discharge [4, 5]. De Heer et al. have reported the field emission from nan-otubes aligned by the suspension-filtering method. This approach is too difficult to be fully adopted in integration process. Recently, there have been efforts to make applications to field emission devices using nanotubes. Saito et al. demonstrated a car-bon nanotube-based lamp, which was oper-ated at high voltage (10KV) [8]. Aproto-type diode structure was tested by the size of 100mm $\times$ 10mm in vacuum chamber [9]. the difficulties arise from the arrangement of vertically aligned nanotubes after the growth. Recently vertically aligned carbon nanotubes have been synthesized using plasma-enhanced chemical vapor deposition(CVD) [6, 7]. Yet, control of a large area synthesis is still not easily accessible with such approaches. Here we report integra-tion processes of fully sealed 4.5-inch CNT-field emission displays (FEDs). Low turn-on voltage with high brightness, and stabili-ty clearly demonstrate the potential applica-bility of carbon nanotubes to full color dis-plays in near future. For flat panel display in a large area, car-bon nanotubes-based field emitters were fabricated by using nanotubes-organic vehi-cles. The purified SWNTs, which were syn-thesized by dc arc discharge, were dispersed in iso propyl alcohol, and then mixed with on organic binder. The paste of well-dis-persed carbon nanotubes was squeezed onto the metal-patterned sodalime glass throuhg the metal mesh of 20${\mu}{\textrm}{m}$ in size and subse-quently heat-treated in order to remove the organic binder. The insulating spacers in thickness of 200${\mu}{\textrm}{m}$ are inserted between the lower and upper glasses. The Y\ulcornerO\ulcornerS:Eu, ZnS:Cu, Al, and ZnS:Ag, Cl, phosphors are electrically deposited on the upper glass for red, green, and blue colors, respectively. The typical sizes of each phosphor are 2~3 micron. The assembled structure was sealed in an atmosphere of highly purified Ar gas by means of a glass frit. The display plate was evacuated down to the pressure level of 1$\times$10\ulcorner Torr. Three non-evaporable getters of Ti-Zr-V-Fe were activated during the final heat-exhausting procedure. Finally, the active area of 4.5-inch panel with fully sealed carbon nanotubes was pro-duced. Emission currents were character-ized by the DC-mode and pulse-modulating mode at the voltage up to 800 volts. The brightness of field emission was measured by the Luminance calorimeter (BM-7, Topcon).

  • PDF

Fabrication and Electrical Insulation Property of Thick Film Glass Ceramic Layers on Aluminum Plate for Insulated Metal Substrate (알루미늄 판상에 글라스 세라믹 후막이 코팅된 절연금속기판의 제조 및 절연특성)

  • Lee, Seong Hwan;Kim, Hyo Tae
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.24 no.4
    • /
    • pp.39-46
    • /
    • 2017
  • This paper presents the fabrication of ceramic insulation layer on metallic heat spreading substrate, i.e. an insulated metal substrate, for planar type heater. Aluminum alloy substrate is preferred as a heat spreading panel due to its high thermal conductivity, machinability and the light weight for the planar type heater which is used at the thermal treatment process of semiconductor device and display component manufacturing. An insulating layer made of ceramic dielectric film that is stable at high temperature has to be coated on the metallic substrate to form a heating element circuit. Two technical issues are raised at the forming of ceramic insulation layer on the metallic substrate; one is delamination and crack between metal and ceramic interface due to their large differences in thermal expansion coefficient, and the other is electrical breakdown due to intrinsic weakness in dielectric or structural defects. In this work, to overcome those problem, selected metal oxide buffer layers were introduced between metal and ceramic layer for mechanical matching, enhancing the adhesion strength, and multi-coating method was applied to improve the film quality and the dielectric breakdown property.

Fabrication and Characterization of NiMn2O4 NTC Thermistor Thick Films by Aerosol Deposition (상온 진공 분말 분사법에 의한 NiMn2O4계 NTC Thermistor 후막제작 및 특성평가)

  • Baek, Chang-Woo;Han, Gui-fang;Hahn, Byung-Dong;Yoon, Woon-Ha;Choi, Jong-Jin;Park, Dong-Soo;Ryu, Jung-ho;Jeong, Dae-Yong
    • Korean Journal of Materials Research
    • /
    • v.21 no.5
    • /
    • pp.277-282
    • /
    • 2011
  • Negative temperature coefficient (NTC) materials have been widely studied for industrial applications, such as sensors and temperature compensation devices. NTC thermistor thick films of $Ni_{1+x}Mn_{2-x}O_{4+{\delta}}$ (x = 0.05, 0, -0.05) were fabricated on a glass substrate using the aerosol deposition method at room temperature. Resistance verse temperature (R-T) characteristics of the as-deposited films showed that the B constant ranged from 3900 to 4200 K between $25^{\circ}C$ and $85^{\circ}C$ without heat treatment. When the film was annealed at $600^{\circ}C$ 1h, the resistivity of the film gradually decreased due to crystallization and grain growth. The resistivity and the activation energy of films annealed at $600^{\circ}C$ for 1 h were 5.203, 5.95, and 4.772 $K{\Omega}{\cdot}cm$ and 351, 326, and 299 meV for $Ni_{0.95}Mn_{2.05}O_{4+{\delta}}$, $NiMn_2O_4$, and $Ni_{1.05}Mn_{1.95}O_{4+{\delta}}$, respectively. The annealing process induced insulating $Mn_2O_3$ in the Ni deficient $Ni_{0.95}Mn_{2.05}O_{4+{\delta}}$ composition resulting in large resistivity and activation energy. Meanwhile, excess Ni in $Ni_{1.05}Mn_{1.95}O_{4+{\delta}}$ suppressed the abnormal grain growth and changed $Mn^{3+}$ to $Mn^{4+}$, giving lower resistivity and activation energy.

a-Si:H TFT Using Ferroelectrics as a Gate Insulator (강유전체를 게이트 절연층으로 한 수소화 된 비정질실리콘 박막 트랜지스터)

  • 허창우;윤호군;류광렬
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2003.10a
    • /
    • pp.537-541
    • /
    • 2003
  • The a-Si:H TFTs using ferroelectric of SrTiO$_3$, as a gate insulator is fabricated on glass. Dielectric characteristics of ferroelectric is better than SiO$_2$, SiN. Ferroelectric increases ON-current, decreases threshold voltage of TFT and also breakdown characteristics. The a-Si:H deposited by PECVD shows absorption band peaks at wavenumber 2,000 $cm^{-1}$ /, 635 $cm^{-1}$ / and 876 $cm^{-1}$ / according to FTIR measurement. Wavenumber 2,000 $cm^{-1}$ /, 635 $cm^{-1}$ / are caused by stretching and rocking mode SiH1. The wavenumber of weaker band, 876 $cm^{-1}$ / is due to SiH$_2$ vibration mode. The a-SiN:H has optical bandgap of 2.61 eV, refractive index of 1.8 - 2.0 and resistivity of 10$^{11}$ - 10$^{15}$ aim respectively. Insulating characteristics of ferroelectric is excellent because dielectric constant of ferroelectric is about 60 - 100 and breakdown strength is over 1 MV/cm. TFT using ferroelectric has channel length of 8 - 20 $\mu$m and channel width of 80 - 200 $\mu$m. And it shows drain current of 3 $\mu$A at 20 gate voltages, Ion/Ioff ratio of 10$^{5}$ - 10$^{6}$ and Vth of 4 - 5 volts.

  • PDF

Colossal Resistivity Change of Polycrystalline NiO Thin Film Deposited by RF Magnetron Sputtering (RF 마그네트론 스퍼터 방법에 의한 다결정 NiO 박막의 비저항 변화)

  • Kim, Youmg-Eun;No, Young-Soo;Park, Dong-Hee;Choi, Ji-Won;Chae, Keun-Hwa;Kim, Tae-Hwan;Choi, Won-Kook
    • Journal of the Korean Vacuum Society
    • /
    • v.19 no.6
    • /
    • pp.475-482
    • /
    • 2010
  • Polycrystalline NiO thin films were deposited on glass substrate by RF magnetron sputtering using only Ar as a plasma sputter gas. based on the analysis of x-ray diffraction (XRD), NiO films had a polycrystalline cubic (NaCl type) structure. NiO thin films grown below and above $200^{\circ}C$ showed preferred orientation of (111) and (220) respectively. It showed colossal change in electrical resistivity as much a ${\sim}10^7$ order form an insulating state of $105\;{\Omega}cm$ below $200^{\circ}C$ to a conducting state of $10^{-2}{\sim}10^{-1}\;{\Omega}cm$ above $300^{\circ}C$ such a Mott metal-insulator transition (MIT) in polycrystalline.