• Title/Summary/Keyword: inquiry skill

Search Result 109, Processing Time 0.02 seconds

The Effects of Music and Science Integrated Activities Using Instruments on the Musical Concept and Science Inquiry Process Skill (악기를 활용한 음악.과학 통합활동이 유아의 음악적 개념 및 과학적 과정기술에 미치는 영향)

  • Lee, Jeong-Hwa;Han, Hee-Seung
    • Korean Journal of Child Studies
    • /
    • v.31 no.1
    • /
    • pp.283-300
    • /
    • 2010
  • This paper investigated the effect of music and science integrated activities using instruments designed to test both musical concept and science inquiry process skills of children. The subjects of this study consisted of two classes of children aged 5 at H Kindergarten in Busan city. This study involved a class of 31 children using a music and science integrated curriculum as the experimental group and another class of 32 children using a traditional music and science curriculum as the control group. The integrated activities were used 12 times over a 6-week period. A test was taken to evaluate the effects of the integrated activities on the children's understanding on seven sub-categories of musical concepts and six sub-categories of science inquiry process skills. The results were that the experimental group showed significantly higher improvements in all subcategories of musical concept and science inquiry process skills, compared to the control group. Based on these results, we concluded that these integrated activities were effective in the development of both musical concepts and the science inquiry process skills of children.

The Effects of MBL-Used Instruction on Scientific Inquiry Skill and Graph Construction and Interpreting Abilities of Middle School Students (MBL 활용 수업이 중학교 학생들의 과학탐구능력과 그래프 작성 및 해석능력에 미치는 효과)

  • Choi, Sung-Bong
    • Journal of the Korean earth science society
    • /
    • v.29 no.6
    • /
    • pp.487-494
    • /
    • 2008
  • The purpose of this study was to investigate the effects of MBL experiment instruction on the 7th graders' scientific inquiry skills and graph construction and interpretation ability in the unit "Elements and movement of sea water". Results are as follows: First, this study analyzed the influence on students' scientific inquiry skill after having six MBL instructional classes. The result showed a significant difference in the scientific inquiry skills between the experimental group and the control group, which implies that the instruction using MBL was an effective way to improve students' scientific inquiry skills. Second, this study also analyzed the influence on students' abilities to construct and interpret graphs. The result did not show any significant differences between the experimental group and the control group in the ability to construct graphs. But it showed significant differences in the ability to interpretgraphs, which means that instruction using MBL was an effective way to improve students' ability to interpret graphs.

An Analysis of the Jeju Beach Science Camp Program Based on the HASA Curriculum and a Survey of Preference

  • Kang, Seon-Tak;Kang, Kyung-Hee
    • Journal of The Korean Association For Science Education
    • /
    • v.31 no.3
    • /
    • pp.429-439
    • /
    • 2011
  • The purpose of this study was to analyze the Jeju beach science camp program and to survey the participating students'' preference levels for the activities included therein. The camp programs were analyzed on the basis of the standards set for the HASA curriculum. The program's "manipulatory skill" area included many manipulatory and creative activities while the "inquiry area" included many basic and integrated inquiry activities. It was also indicated that the "knowledge area" included many activities appropriate for understanding concepts and principles while the "attitude area" included many activities appropriate for stimulating curiosity and enjoyment. Thus, it could be seen that the areas stipulated for the HASA curriculum were considerably consistent with the purpose of the science camp. The participating students showed preference for manipulatory and creative activities included in the program. They also preferred basic, inquiry level activities included under the area of "inquiry skills." It was identified that the students most preferred the conceptual stage included under the area of "knowledge" where they were required to grasp the common characteristics of events, things, and phenomena, as also the enjoyment stage included under the "attitude" area, where they were required to participate in pleasant science activities. These findings indicate that science camp programs should be composed of manipulatory and creative activities as well as activities that aim at basic research and the understanding of concepts.

Construction of a Structural Equation Model on Attitudes to Science Using LISREL (LISREL을 이용한 과학에서의 태도에 관한 구조방정식모델의 구축)

  • Lee, Kyung-Hoon
    • Journal of The Korean Association For Science Education
    • /
    • v.17 no.3
    • /
    • pp.301-311
    • /
    • 1997
  • The purpose of this study is to construct a structural equation model and to analyze causal relationships among variables related to attitudes to science using structural equation modeling(SEM) with LISREL VII. The sample consisted of 483 10th grade boys from a general high school in Pusan, Korea. The questionnaires (ABC-attitude scale: affection, behavioral intention, cognition scale of attitude towards science) were developed by the researcher through a pilot study. And other instruments have modified previous ones. Five instruments were used in this study: GALT(group assessment of logical thinking), MTSlS(modified test of science inquiry skill), ABC-attitude scale, MSAS(modified scientific attitude scale), CSAT(common science achievement test). Structural equation modeling with LISREL VII($J\ddot{o}reskog$ & $S\ddot{o}rbom,$ 1993) was employed to estimate the causal inferences about hypothesized relationships among observed data sets. Three competing models consisted of five latent variable(scientific thinking ability, science inquiry skill, attitude towards science, scientific attitude, science achievement) - lP(inquiry preceding) model, AP(attitude preceding) model and AM(attitude mediating) model - were developed. Among these competing models, IP model satisfied the observed data sets. The causal relationships among "attitudes to science" and other latent variables were reliably identified. According to the results of the present study, science inquiry skill was the most significant variable that can predict science achievement. But scientific thinking ability has not directly influenced science achievement. This study suggests that inquiry based teaching-learning processes should be offered to students for improvement of science achievement. At the same time, it seems to be important to develop positive attitude towards science. Understanding of relationships among variables related to attitudes to science will be helpful to the development of science curriculum and to the design of science teaching and learning process. LISREL has been recognized as a useful approach in testing a SEM. However, in this study, LISREL approach was estimated as much more useful method for research design.

  • PDF

A Critical Review of the Skill-Based Approach to Scientific Inquiry in Science Education (과학 교육에서 기능 중심의 과학 탐구에 대한 비판적 고찰)

  • Oh, Phil Seok
    • Journal of The Korean Association For Science Education
    • /
    • v.40 no.2
    • /
    • pp.141-150
    • /
    • 2020
  • The purpose of this study is to critically review the skill-based approach to scientific inquiry in science education and to explore the meaning of science practices that are emphasized in recent science education reform movement. An extensive review of relevant literature was carried out, and the results were summarized according to the detailed themes of the study. In the skill-based approach of which Science-A Process Approach (SAPA) is a representative example, science process skills were presented as hierarchically connected with one another, they were believed to be transferable or generalizable, and science learning through discovery was stressed. These points of view are, however, contradicted with those of the modern philosophy of science which suggests the theory-laden nature of using the skills. The skill-based view has also been criticized by the fact that the use of inquiry skills is content-specific or context-dependent and that science theories or principles cannot be discovered by induction. In contrast, the recent view understands science practices holistically, emphasizes the diverse ways of doing the practices which vary with different contents or contexts, and considers student ideas importantly in the science classroom. The findings of this study can contribute to the development of a new science curriculum by providing implications for establishing a consistent view on scientific inquiry.

Inquiry Problem Solving Characteristics among Categories with Science Process Skills and Concepts by High School Student's Protocol Analysis (고등학생의 프로토콜 분석을 통한 과학 탐구능력과 개념 중심의 탐구능력 대범주별 과학 문제 해결 특성)

  • Lee, Hang-Ro
    • Journal of The Korean Association For Science Education
    • /
    • v.19 no.3
    • /
    • pp.355-366
    • /
    • 1999
  • In this study, the characteristics of science inquiry problem solving were analyzed in the interactions between science process skills and science concepts by each related its category. Nine types of problem solving, which were based on two elements and the thinking aloud were found largely by protocol analysis, but six types when integrated similar thinking processes. There were quite differences in the representative types between students who succeeded and failed when science inquiry items were solved in the abilities of recognizing problems and generating hypotheses or those of drawing conclusions and evaluating. But there were not complete differences in those types between students who succeeded and failed when they were solved in the abilities of designing and performing experiments or those of interpreting and analyzing data. The data were divided into independent variables: $D_1,\;D_2,\;D_3,\;D_4,\;D$ and $C_1,\;C_2,\;C_3,\;C_4,\;C$ and dependant variables; $E_1,\;E_2,\;E_3,\;E_4,\;E$. The former consisted of the content-free science process skill achievement levels by each category of science inquiry skill and the science concept achievement levels, the latter the science inquiry problem achievement levels by each category of science inquiry skill. The regression equations were acquired within the 0.05 significant level by regression analysis: $E_1=0.03+0.16D_1+0.29C_1,\;E_2=-0.203+0.21D_2+0.45C_2,\;E_3=-0.32+0.13D_3+0.47C_3,\;E_4=0.61+0.09D_4+0.29C_4,\;E=-1.41+0.13D+0.47C$(E : the achievement of science problems, D : the achievement of science process skills, C : the achievement of science concepts).

  • PDF

Development of a Standard to Assess Classifying Inquiry Skills by Observation (관찰에 의한 분류하기 탐구 능력 평가 준거 개발)

  • Ju, Jung-Eun;Cha, Hee-Young
    • Journal of Korean Elementary Science Education
    • /
    • v.26 no.4
    • /
    • pp.407-417
    • /
    • 2007
  • The purpose of this research is to develop standards with which we can design an instrument to assess classifying inquiry skills by observing students' behavior and reported outcome which is not the paper and pencil test. This research is focused on developing a standard for analysis of classifying ability among research functions. To identify classifying inquiry skills, standards from classifying behaviors were comparing ways with other cards and using information included in the cards; Standards selected from the final reports were the appropriateness, inconsistency and hierarchy of the classification outcome. The standards were initially selected during the class with picture cards printed various birds appearances on the front side and their traits on the back which was specially designed among sixth graders. The picture cards prepared with plant leaves and stems had designed to identify whether standards was effective to assess student's classifying ability. The standards was an effective tool to assess student's classifying inquiry skills.

  • PDF

Effects of the Inquiry Model on the Scientific Thinking of Preschoolers (탐구학습모형이 유아의 과학적 사고 능력에 미치는 영향)

  • Lee, Yeung Suk;Lim, Myeung Hee;Park, Ho Cheol
    • Korean Journal of Child Studies
    • /
    • v.22 no.2
    • /
    • pp.237-253
    • /
    • 2001
  • This study examined the effects of the inquiry model on children's scientific thinking ability and processing skills. The experimental classroom of a kindergarten in Seoul was assigned the inquiry model while the control classroom was assigned general scientific education (N=48). Seventeen treatment sessions were applied to the experimental group. Tests to investigate the hypotheses included the Sink and Float Test and a new instrument developed by the researchers. Findings showed that preschoolers receiving the inquiry model of instruction gained higher scores in scientific thinking ability and processing skills than the preschoolers in the classroom using the general scientific education model. In sum, this study proved the superior effect of the inquiry model in developing children's scientific skills and ability.

  • PDF

The Development of Teaching Strategy for the Enhancement of the Creative Problem Solving Thinking Skills through General Chemistry Laboratory and the Effects of It's Applications(I) (창의적 문제 해결력 지향 일반화학실험 교수 전략 개발 및 적용 효과(제I보))

  • Bang, Dam-I;Park, Ji-Eun;Song, Ju-Yeon;Kang, Soon-Hee
    • Journal of the Korean Chemical Society
    • /
    • v.55 no.2
    • /
    • pp.290-303
    • /
    • 2011
  • The purpose of this study was to introduce the practical model on the enhancement of the divergent and convergent thinking skills through inquiry instruction in science class. In this study, the creative thinking skill has been defined by divergent thinking skill as the narrow sense. In the science field, the problem solving thinking skill is just same as the inquiry thinking skill. Also, the problem solving thinking skill has been defined by convergent thinking skill as the critical thinking skill. This new instruction had been used for the college student in the class of general chemistry laboratory for the one semester. The first results had been founded that the students' divergent thinking skill had been increased significantly. Especially, the skills of recognition of problems, the skills of making hypothesis, and the skills of transformation and interpretation of data had been increased significantly. The second results had been founded that the students' convergent thinking skill had been increased significantly. Especially, the skills of making hypothesis, the skills of transformation and interpretation of data, and the skills of making conclusion and generalization had been increased significantly. The third results had been founded that the students' the creative and problem solving thinking skill had been increased significantly. Especially, the rest of all skills exception the skill of control variables had been increased significantly.

An approach to development of scientific thinking skills through science inquiry play of analogy (과학적 사고력의 신장을 위한 과학비유탐구놀이 학습방법의 구안)

  • 현동걸
    • Journal of Korean Elementary Science Education
    • /
    • v.17 no.1
    • /
    • pp.61-73
    • /
    • 1998
  • This research suggests science inquiry play of analogy as a teaming method to help the students in concrete operational stage to develop scientific thinking skills and to understand abstract science conceptions. The research focuses on/considers the characteristics and merits of the science inquiry plays, and the learning method by analogical reasoning. This learning through the science inquiry play of analogy can be considered as a meta-model for scientific thinking skill. The learning has the following processes: 1) Students analogize the abstract science conceptions and facts into play-type activities including the concrete contents such as students themselves, their physical-sensory motions, concrete objects, play methods, and play rules. 2) Students as analogized objects play a role physically and sensuously according to the methods and rules analogized in the play. 3) Students find out the concrete contents included in the science inquiry play of analogy, draw the results, and deduce the new conceptions from the results by reflective thinking and analogical reasoning.

  • PDF