• Title/Summary/Keyword: inquiry problem finding

Search Result 21, Processing Time 0.024 seconds

Analysis of Characteristics of Scientific Inquiry Problem Finding Process in Small Group Free Inquiry (소집단 자유 탐구에서 과학적 탐구 문제 발견 과정의 특징 분석)

  • Cheon, Myeongki;Lee, Bongwoo
    • Journal of The Korean Association For Science Education
    • /
    • v.38 no.6
    • /
    • pp.865-874
    • /
    • 2018
  • The purpose of this study is to explore the process of inquiry problem finding in high school students' small group free-inquiry. For this purpose, 91 second grade high school students took part in small group free-inquiry. We conducted interviews with students (48 students in 15 groups) who were relatively successful in the inquiry performed for one semester (about 4 months). Based on the results of the interviews, we analyzed the characteristics of the inquiry problem finding through the steps and strategies in the inquiry problem finding process. The main results are as follows: First, in the inquiry problem finding process, steps such as selecting keyword, presenting an inconvenience, presenting a question, and finding an inquiry problem were found, and in particular, the process of selecting the keyword that correspond to the subject of inquiry, such as the material and situation of inquiry, is very important step in inquiry problem finding. Second, the strategies that students used in the process of finding inquiry problem included searching information, review of prior research, sharing of knowledge and experience, linking and extension of knowledge and experience, environmental awareness, expert consultation, discussion of suitability, elaboration, etc. Third, finding an inquiry problem was relatively easy in the inquiry for finding out problems (i.e. inconvenience) in everyday life and investigating ways to solve them. Fourth, the review of prior researches through the internet was useful in the process of selecting keyword and elaboration. Fifth, the factors that students consider when selecting one of several candidate inquiry problems are feasibility, real-life applicability, and economic condition. Sixth, the current affairs had a positive impact on the inquiry problem finding. Based on the above results, we discussed some ways to increase students' inquiry problem finding ability.

A Comparison of Science Inquiry Problem Finding Ability of Gifted Elementary Students of Science and General Elementary Students (초등 과학영재와 일반 학생의 과학탐구문제 발견 능력에 대한 비교)

  • Kim, Min-Hee;Lee, Seok-Hee
    • Journal of Korean Elementary Science Education
    • /
    • v.32 no.4
    • /
    • pp.464-472
    • /
    • 2013
  • The purpose of this study was to analyze the science inquiry problem finding ability of gifted elementary students of science and general elementary students. For this purpose, this study analyzed the types of science inquiry problems in an ill-structured problem finding situation. Also, this study has compared science inquiry problem finding abilities of those two groups. From the results of this study, new ways of improving student' science inquiry problem finding ability and selection of gifted students of science were suggested. The results of this study can be summarized as follows. First, most of the inquiry problems generated by the scientifically gifted and the general students in an ill-structured problem situation could be categorized into seven types (measurement, method, cause, possibility, what, comparison, relationship) according to the inquiry objectives, and both group found more problems in scientific context than in everyday context. Regardless of the context of problem, scientifically gifted students found more problems and the type of problems generated by them were more various than those of general students. Second, there were differences in problem finding ability between scientifically gifted and general students. Scientifically gifted students found more problems and the quality of problems were higher than general students.

Analysis of the Scientific Inquiry Problem Generated by the Scientifically-Gifted in Ill and Well Inquiry Situation (구조화 정도가 다른 탐구 상황에서 과학영재들이 생성한 과학탐구문제 비교 분석)

  • Ryu, Si-Gyeong;Park, Jong-Seok
    • Journal of The Korean Association For Science Education
    • /
    • v.28 no.8
    • /
    • pp.860-869
    • /
    • 2008
  • The purpose of this study is to suggest an instructional direction for improving scientific inquiry problem-finding ability of the scientifically-gifted. For this purpose, this study has made an in-depth analysis of the scientific inquiry problems generated by the scientifically-gifted in Problem-Finding Activity in Ill-structured Inquiry Situation (PFAIIS) and Problem-Finding Activity in Well-structured Inquiry Situation (PFAWIS). The results of this study turned out to be as follows: First, most of the problems generated in PFAIIS and PFAWIS could be categorized into seven types (measurement, method, cause, possibility, what, comparison, relationship) according to the inquiry objectives, while the frequency of each type shown in each inquiry objective was a little different. Second, the frequency of scientific concepts stated in inquiry problem was more in PFAWIS than in PFAIIS. But the scientific concepts were shown more diversely in PFAIIS than in PFAWIS. Therefore, results of this study have the following educational implications. First, it is necessary to offer various opportunities of problem-finding activity under ill-structured scientific Inquiry situation. Second, it is needed to emphasize that a new inquiry problem can be found out even during general scientific experiment and frequently to discuss inquiry problems generated during an experiment. Third, it is needed to encourage the scientifically-gifted to generate a scientific inquiry problem based on at least more than seven types.

Analysis of Science Process Skills and Suggestions for Developing Scientific-Inquiry of Secondary Science Gifted Students (과학영재 탐구활동에 제시된 과학탐구능력 분석 및 개발을 위한 제안)

  • Shin, My-Young
    • Journal of Gifted/Talented Education
    • /
    • v.23 no.2
    • /
    • pp.289-310
    • /
    • 2013
  • The purpose of the study is to investigate science process skills and suggest several considerations about developing scientific inquiries for secondary science gifted students. To do this, we analyzed scientific inquiries of science gifted programs and evaluated them on the quantity of problem perception, problem finding and inquiry planning that are regarded as high level science process skills, then revised each inquiry to include those high level skills. The result was that the first, there were differences in frequencies and types of science process skills among those inquiries. The second, there were very few problem perception and problem finding and were not many inquiry planning. The third, some of the revised inquiries showed those high level skills. From this, we would like to suggest we should construct scientific inquiries of science gifted program out of many and various themes. And there should be more high level science process skills such as problem perception, problem finding, and inquiry planning. For this, scientific inquiry developers should have intentions to involve such science process skills which is appropriate for science gifted student.

An Analysis of Structural Equation Model on the Scientific Problem Finding Ability of the Scientifically Gifted Based on Science Related Attitude, Motivation, and Self-regulation Learning Strategy (과학영재의 과학문제발견력 관련변인에 대한 구조방정식모형 분석: 과학관련태도와 동기 및 자기조절 학습전략을 중심으로)

  • Kim, Mpmg-Sook;Han, Ki-Soon
    • Journal of Gifted/Talented Education
    • /
    • v.18 no.1
    • /
    • pp.23-52
    • /
    • 2008
  • The purpose of this study was to examine the Structural Equation Model (SEM) of scientific problem finding ability based on science related attitude, motivation and self-regulation learning strategy of the gifted in science. A total of 153 scientifically gifted students were selected from a university-based Sifted education center The instruments used for the study were Test of Science-Related Attitudes, Motivated Strategies for Learning Questionnaire (MSLQ), and Science Problem Finding Test. In order to examine Structural Equation Model (SEM) of scientific problem finding ability, we assumed scientific problem finding model related to science inquiry, model I (domain specific), and scientific problem finding model related to creativity, model II (domain general) The results of this research are as follows. First, the correlations between science related attitudes and MSLQ were significant; motivation and self-regulated learning strategy as sub factors were positively correlated to science related attitudes. Only scientific attitude as a sub factor of science related attitudes was significantly correlated to elaboration of creativity category in scientific problem finding ability. In other hand, self-regulated learning strategy was significantly correlated to elaboration, inquiry motivation and inquiry level in scientific problem finding ability. Second, as the results of SEM analysis, we confirmed model I and model II were the best adequate through the indices of best fit (TLI, CFI>.90, RMSEA<.08); scientific problem finding ability was directly influenced motivation and self-regulated learning strategy but science related attitudes indirectly influenced scientific problem finding ability through motivation and self-regulated learning strategy. Based on the results, the implications for science gifted education were discussed.

Analysis of Elementary Teachers' and Students' Views about Difficulties on Open Science Inquiry Activities (초등학교 과학과 자유탐구 활동에서 교사와 학생이 겪는 어려움 분석)

  • Shin, Hyun-Hwa;Kim, Hyo-Nam
    • Journal of Korean Elementary Science Education
    • /
    • v.29 no.3
    • /
    • pp.262-276
    • /
    • 2010
  • The purpose of this study was to investigate and analyze the elementary teachers' views and students' views about the difficulties in teaching and learning on open inquiry activities of elementary school science. Semi-structured interviews were conducted individually with three elementary teachers who have serviced more than three years, and with twenty four elementary students attending schools located in Cheongju City. And their anecdotes were collected and analyzed. The interview questions were developed through Seidman's steps to acquire the reliability in the interview data. From the interviews and anecdotes, we found that elementary teachers' views about the difficulties of teaching open inquiry activities: the difficulties of teaching in finding inquiry problem and planning inquiry, the difficulties of managing group activities, the difficulties of managing class hours for inquiry, the lack of the students' inquiry abilities, and problems on students' affective characteristics. And the students have the views about the difficulties in doing open inquiry activities: the difficulties of finding inquiry problem and planning inquiry, being unaccustomed to write reports, the troubles with investigating, problems on affective characteristics, the difficulties of joining in a group, and the lack of inquiry abilities. The teachers give suggestions for effective application of the open inquiry activities: first, the teachers must encourage students' emotion and will in doing open inquiry activities, second, there must be the steady inquiry teaching and learning in ordinary elementary science classes. Based on the results, this study suggested that elementary teachers should concern specially about students' being unaccustomed to write reports and the troubles in doing scientific investigation.

  • PDF

An Analysis of the Scientific Problem Solving Strategies according to Knowledge Levels of the Gifted Students (영재학생들의 지식수준에 따른 과학적 문제해결 전략 분석)

  • Kim, Chunwoong;Chung, Jungin
    • Journal of Korean Elementary Science Education
    • /
    • v.38 no.1
    • /
    • pp.73-86
    • /
    • 2019
  • The purpose of this study is to investigate the characteristics of problem solving strategies that gifted students use in science inquiry problem. The subjects of the study are the notes and presentation materials that the 15 team of elementary and junior high school students have solved the problem. They are a team consisting of 27 elementary gifted and 29 middle gifted children who voluntarily selected topics related to dimple among the various inquiry themes. The analysis data are the observations of the subjects' inquiry process, the notes recorded in the inquiry process, and the results of the presentations. In this process, the knowledge related to dimple is classified into the declarative knowledge level and the process knowledge level, and the strategies used by the gifted students are divided into general strategy and supplementary strategy. The results of this study are as follows. First, as a result of categorizing gifted students into knowledge level, six types of AA, AB, BA, BB, BC, and CB were found among the 9 types of knowledge level. Therefore, gifted students did not have a high declarative knowledge level (AC type) or very low level of procedural knowledge level (CA type). Second, the general strategy that gifted students used to solve the dimple problem was using deductive reasoning, inductive reasoning, finding the rule, solving the problem in reverse, building similar problems, and guessing & reviewing strategies. The supplementary strategies used to solve the dimple problem was finding clues, recording important information, using tables and graphs, making tools, using pictures, and thinking experiment strategies. Third, the higher the knowledge level of gifted students, the more common type of strategies they use. In the case of supplementary strategy, it was not related to each type according to knowledge level. Knowledge-based learning related to problem situations can be helpful in understanding, interpreting, and representing problems. In a new problem situation, more problem solving strategies can be used to solve problems in various ways.

Exploring the Relationships between Inquiry Problems and Scientific Reasoning in the Program Emphasized Construction of Problem: Focus on Inquiry About Osmosis (문제의 구성을 강조한 프로그램에서 나타난 탐구 문제와 과학적 추론의 관련성 탐색 -삼투 현상 탐구 활동을 중심으로-)

  • Baek, Jongho
    • Journal of The Korean Association For Science Education
    • /
    • v.40 no.1
    • /
    • pp.77-87
    • /
    • 2020
  • Scientific inquiry has emphasized its importance in various aspects of science learning and has been performed according to various methods and purposes. Among the various aspects of science learning, it is emphasized to develop core competencies with science, such as scientific thinking. Therefore, it is necessary to support students to be able to formulate scientific reasoning properly. This study attempts to explore problem-finding and scientific reasoning in the process of performing scientific inquiry. This study also aims to reveal what factors influence this complex process. For this purpose, this study analyzed the inquiry process and results performed by two groups of college students who conducted the inquiry related to osmosis. To analyze, research plans, presentations, and group interviews were used. As a result, it was found that participants used various scientific reasoning, such as deductive, inductive, and abductive reasoning, in the process of problem finding for their inquiry about osmosis. In the process of inquiry and reasoning complexly, anomalous data, which appear regularly, and the characteristics of experimental instruments influenced their reasoning. Various reasons were produced for the purpose of constructing the best explanation about the phenomena observed by participants themselves. Finally, based on the results of this study, several implications for the development context of programs using scientific inquiry are discussed.

Suggestion of Computational Thinking-Scientific Inquiry (CT-SI) Model through the Exploration of the Relationship Between Scientific Problem Solving Process and Computational Thinking (과학적 문제해결과정과 컴퓨팅 사고의 관련성 탐색을 통한 컴퓨팅 사고 기반 과학 탐구(CT-SI) 모형의 제안)

  • Hwang, Yohan;Mun, Kongju
    • Journal of Science Education
    • /
    • v.44 no.1
    • /
    • pp.92-111
    • /
    • 2020
  • The 2015 revised science curriculum and NGSS (Next Generation Science Standard) suggest computational thinking as an inquiry skill or competency. Particularly, concern in computational thinking has increased since the Ministry of Education has required software education since 2014. However, there is still insufficient discussion on how to integrate computational thinking in science education. Therefore, this study aims to prepare a way to integrate computational thinking elements into scientific inquiry by analyzing the related literature. In order to achieve this goal, we summarized various definitions of the elements of computational thinking and analyzed general problem solving process and scientific inquiry process to develop and suggest the model. We also considered integrated problem solving cases from the computer science field and summarized the elements of the Computational Thinking-Scientific Inquiry (CT-SI) model. We asked scientists to explain their research process based on the elements. Based on these explanations from the scientists, we developed 'Problem-finding' CT-SI model and 'Problem solving' CT-SI model. These two models were reviewed by scientists. 'Problem-finding' model is relevant for selecting information and analyzing problems in the theoretical research. 'Problem solving' is suitable for engineering problem solving process using a general research process and engineering design. In addition, two teachers evaluated whether these models could be used in the secondary school curriculum. The models we developed in this study linked with the scientific inquiry and this will help enhance the practices of 'collecting, analyzing and interpreting data,' 'use of mathematical thinking and computer' suggested in the 2015 revised curriculum.

Improvement of Students' Problem Finding and Hypothesis Generating Abilities: Gifted Science Education Program Utilizing Mendel's Law (문제발견 및 가설설정 능력 신장 과학영재교육프로그램 개발: 멘델의 과학적 사고과정 적용)

  • Kim, Soon-Ok;Kim, Bong-Sun;Seo, Hae-Ae;Kim, Young-Min;Park, Jong-Seok
    • Journal of Gifted/Talented Education
    • /
    • v.21 no.4
    • /
    • pp.1033-1053
    • /
    • 2011
  • In the process of establishing the principle of genetics, Mendel discovered problems based on various observations. Mendel's scientific thinking ability can be effective if this ability is embedded in gifted science education programs. The study aims to develop a science gifted education program utilizing Mendel's scientific thinking ability shown in the principles of genetics and examine students' changes in scientific thinking ability before and after the program implementation. For the program development, first, the characteristics of Mendel's scientific thinking ability in the process of establishing the principle of genetics were investigated and extracted the major elements of inquiry. Second, the science gifted education programs was developed by applying the inquiry elements from the Mendel's Law. The program was implemented with 19 students of $7^{th}$, $8^{th}$ graders who attend the science gifted education center affiliated with university during July 2011. The Mendel's scientific thinking ability was classified into induction, deduction, and integration. The elements of inquiry extracted from the Mendel's scientific thinking include making observation, puzzling observation, proposing causal questions, generating hypothesis, drawing inference, designing experiment, gathering and analyzing data, drawing conclusions, and making generalization. With applying these elements, the program was developed with four phases: $1^{st}$ - problem finding; $2^{nd}$ - hypothesis generating; $3^{rs}$ - hypothesis testing and $4^{th}$ - problem solving. After implementation, students' changes in scientific thinking ability were measured. The findings from the study are as follows: First, students' abilities of problem finding is significantly (p<.05) increased. Second, students' abilities of hypothesis generating is significantly (pp<.05) increased.