• 제목/요약/키워드: input system

검색결과 11,562건 처리시간 0.036초

지식 간 상호참조적 네비게이션이 가능한 온톨로지 기반 프로세스 중심 지식지도 (Ontology-Based Process-Oriented Knowledge Map Enabling Referential Navigation between Knowledge)

  • 유기동
    • 지능정보연구
    • /
    • 제18권2호
    • /
    • pp.61-83
    • /
    • 2012
  • 지식지도는 관련된 지식의 현황을 네트워크 형식으로 보여주는 일종의 도식으로, 지식 간의 상호참조적 네비게이션 관계를 기초로 하는 지식 분류 및 저장 체계 역할을 한다. 이러한 이유로 인하여 지식 및 이들 지식이 또 다른 지식과 갖는 관계를 네트워크 형식으로 형식적이고 객관적으로 묘사하기 위한 온톨로지 기반 지식지도의 필요성이 대두되어왔다. 본 논문은 지식 간의 상호참조적 네비게이션이 가능한 온톨로지 기반 지식지도를 구현하기 위한 방법론을 제시한다. 제시된 방법론에 의해 구현되는 온톨로지 기반 지식지도는 지식 간의 상호참조적 네비게이션을 가능하게 할 뿐만 아니라 이러한 지식 간 네트워크 관계에 의해 추가적인 지식 간의 관계를 추론할 수 있다. 제시된 개념의 타당성을 검증하기 위하여 두 가지의 실제 비즈니스 프로세스를 기반으로 지식지도를 구현하였고, 구현된 지식지도에 나타나는 지식 간 네트워크 구성의 유효성을 검토하였다.

빅데이터 기반의 정성 정보를 활용한 부도 예측 모형 구축 (Bankruptcy Prediction Modeling Using Qualitative Information Based on Big Data Analytics)

  • 조남옥;신경식
    • 지능정보연구
    • /
    • 제22권2호
    • /
    • pp.33-56
    • /
    • 2016
  • 대부분의 부도 예측에 관한 연구는 재무 변수를 중심으로 통계적 방법 또는 인공지능 기법을 적용하여 부도 예측 모형을 구축하였다. 그러나 재무비율과 같은 회계 정보를 이용한 부도 예측 모형은 재무 제표 결산 시점과 신용평가 시점 간 시차를 고려하지 않을 뿐만 아니라 해당 산업의 경제적 상황과 같은 외부 환경적인 요소를 반영하기 어렵다는 한계점이 존재하였다. 기업의 부도 여부를 예측하기 위해 정량 정보인 재무 변수만을 이용하는 것에 한계가 있음에도 불구하고 정성 정보를 부도 예측 모형에 반영한 연구는 아직 미흡한 실정이다. 본 연구에서는 재무 변수를 이용하는 기존 부도 예측 모형의 성과를 개선하기 위해 빅데이터 기반의 정성 정보를 추가적인 입력 변수로 활용하는 부도 예측 모형을 제안하였다. 제안 모형의 성과 향상은 정성 정보를 예측 모형에 통합시키기에 적합한 형태로 정보의 유형을 변환시킬 수 있는가에 따라 달려있다. 이에 본 연구에서는 정성 정보 처리를 위한 방법으로 빅데이터 분석 기법 중 하나인 텍스트 마이닝(Text Mining)을 활용하였다. 해당 산업과 관련된 경제 뉴스 데이터로부터 경제 상황에 대한 감성 정보를 추출하기 위해 도메인 중심의 감성 어휘 사전을 구축하고, 구축된 어휘 사전을 기반으로 감성 분석(Sentiment Analysis)을 수행하였다. 형태소 분석 등을 포함한 텍스트 전처리 과정을 거쳐 감성 어휘를 추출하고, 각 어휘에 대한 극성 및 감성 점수를 부여하였다. 분석 결과, 전통적 부도 예측 모형에 경제 뉴스 데이터에서 도출한 정성 정보를 반영하는 것은 모형의 성과를 개선하는 것으로 나타났다. 특히, 경제 상황에 대한 부정적 감정이 기업의 부도 여부를 예측하는 데 더욱 효과적임을 알 수 있었다.

지상관측 레이다 산란계를 이용한 벼 군락의 후방산란계수 측정 (Measurement of Backscattering Coefficients of Rice Canopy Using a Ground Polarimetric Scatterometer System)

  • 홍진영;김이현;오이석;홍석영
    • 대한원격탐사학회지
    • /
    • 제23권2호
    • /
    • pp.145-152
    • /
    • 2007
  • 본 논문은 지표면 현상의 관측에 날씨의 영향을 거의 받지 않는 마이크로파 L-밴드(1.95 GHz)와 C-밴드(5.3 GHz) scatterometer 시스템을 이용하여 농업과학기술원 내의 논에서 자라는 추청벼를 대상으로 2006년 5월 29일부터 10월 9일까지 생육에 따른 군락의 후방산란계수를 관측한 데이터와 작물의 생육과의 관계를 살펴보고 또한, 측정 시스템의 개요, 측정 시스템의 보정 방법들을 기술하고자 한다. Scatterometer 시스템의 송수신기로 HP 8753D 벡터 네트워크 분석기를 사용하며, 타워 위에 안테나를 설치하여 3.4 m의 높이에서 측정하도록 하였다. L-밴드와 C-밴드 scatterometer는 VV-, VH-, HV-, HH-편파를 측정하여 fully polarimetric한 데이터를 얻도록 설계된 레이더시스템으로 입사각을 $30^{\circ}{\sim}60^{\circ}$에서 $10^{\circ}$간격으로 각각 30개의 독립적인 샘플을 측정하여 통계적으로 후방산란계수를 얻었다. 타워에서 발생하는 전파 잡음과 안테나 패턴의 부엽에 의한 지면에서의 수직반사(coherent 성분) 전파를 제거하기 위해 네트워크 분석기의 time gating 기능을 사용하며, 55 cm 크기의 trihedral 전파반사기를 보정용 반사기로 사용하고, STCT(single target calibration technique) 방법을 이용하여 시스템을 보정하였다. 측정 결과를 분석하여 주파수, 입사각도, 편파의 변화에 대한 벼의 후방산란 특성과 벼의 생육상태와의 관계를 살펴보았다. L-밴드와 C-밴드 모두 벼의 생육과 밀접한 결과를 나타내었으나, 입사각이 작을 때는 C-밴드와의 상관이 높게 나타났고 입사각이 커질수록 L-밴드와의 상관이 높게 나타났다. 편파는 L-밴드와 C-밴드 모두 hh 편파가, 입사각은 50도에서 가장 생육의 변이를 잘 설명하는 것으로 나타났다. 생육 데이터 모두를 이용한 경우보다는 유수형성기 또는 출수기 등 벼 생육의 질적인 변화를 보이는 시기에 따라 나누어 분석하는 것이 변화추이를 더 잘 설명하는 것으로 나타났다.

인공지능(AI) 스피커에 대한 사회구성 차원의 발달과정 연구: 제품과 시기별 공진화 과정을 중심으로 (A study of Artificial Intelligence (AI) Speaker's Development Process in Terms of Social Constructivism: Focused on the Products and Periodic Co-revolution Process)

  • 차현주;권상희
    • 인터넷정보학회논문지
    • /
    • 제22권1호
    • /
    • pp.109-135
    • /
    • 2021
  • 본 연구는 전통뉴스 보도에 나타난 인공지능(AI)스피커 뉴스 텍스트 분석을 통해 인공지능(AI) 스피커 발달과정을 분류하고 시기별 제품별 특성을 파악하였다. 또한 AI 스피커 사업자 제품별 뉴스 보도와 시기별 뉴스 보도간의 상관관계를 분석하였다. 분석에 사용된 이론적 배경은 뉴스의 프레임과 토픽프레임이다. 분석방법으로는 LDA 방식을 활용한 토픽모델링(Topic Modeling)과 의미연결망분석이 사용되었으며, 추가로 'UCINET'중 QAP분석을 적용하였다. 연구방법은 내용분석 방법으로 2014년부터 2019년까지 AI 스피커 관련 2,710건의 뉴스를 1차로 수집하였고, 2차적으로 Nodexl 알고리즘을 이용하여 토픽프레임을 분석하였다. 분석 결과 첫째, AI 스피커 사업자 유형별 토픽 프레임의 경향은 4개 사업자(통신사업자, 온라인 플랫폼, OS 사업자, IT디바이스 생산업자) 특성에 따라 다르게 나타났다. 구체적으로, 온라인 플랫폼 사업자(구글, 네이버, 아마존, 카카오)와 관련한 프레임은 AI 스피커를 '검색 또는 입력 디바이스'로 사용하는 프레임의 비중이 높았다. 반면 통신 사업자(SKT, KT)는 모회사의 주력 사업인 IPTV, 통신 사업의 '보조 디바이스' 관련한 프레임이 두드러지게 나타났다. 나아가 OS 사업자(MS, 애플)는 '제품의 의인화 및 음성 서비스' 프레임이 두드러지게 보였으며, IT 디바이스 생산업자(삼성)는 '사물인터넷(IoT) 종합지능시스템'과 관련한 프레임이 두드러지게 나타났다. 둘째, AI 스피커 시기별(연도별) 토픽 프레임의 경향은 1기(2014-2016년)에는 AI 기술 중심으로 발달하는 경향을 보였고, 2기(2017-2018년)에는 AI 기술과 이용자 간의 사회적 상호 작용과 관련되어 있었으며, 3기(2019년)에는 AI 기술 중심에서 이용자 중심으로 전환되는 경향을 나타냈다. QAP 분석 결과, AI 스피커 발달에서 사업자별과 시기별 뉴스 프레임이 미디어 담론의 결정요인에 의해 사회적으로 구성되는 것을 알 수 있었다. 본연구의 함의는 AI 스피커 진화는 사업자별, 발달시기별로 모회사 기업의 특성과 이용자 간의 상호작용으로 인한 공진화 과정이 나타냄을 발견할 수 있었다. 따라서 본 연구는 AI 스피커의 향후 전망을 예측하고 그에 따른 방향성을 제시하는 데 중요한 시사점을 제공한다.

근거이론을 활용한 설계자의 경의선숲길공원 사후평가 - 연남동 구간을 중심으로 - (A Study on the Designer's Post-Evaluation of Gyeongui Line Forest Park Based on Ground Theory - Focused on Yeonnam-dong Section -)

  • 김은영;홍윤순
    • 한국조경학회지
    • /
    • 제47권3호
    • /
    • pp.39-48
    • /
    • 2019
  • 본 연구는 2016년 완공된 경의선숲길공원 중 보완설계를 통해 준공된 연남동 구간의 설계에 중추적으로 참여한 설계자의 심층인터뷰 내용을 근거이론을 통해 해석한 내용이다. 이 대상 환경은 국내외의 많은 수상실적을 보유하며, 실제 이용객으로부터도 매우 긍정적 평가를 받고 있는 공원이다. 연구방법론인 근거이론방법론의 개방코딩을 통해 53개의 개념을 도출하였고, 이를 통합한 34개의 상위범주와 이를 재통합한 18개 차상위 범주를 도출하였다. 이후 축코딩 단계에서는 근거이론의 여섯 항목의 패러다임 상에서 해석하였는데, 도출된 결과들 중 공원조성에 가장 큰 긍정적 영향을 준 범주로 '발주처의 의지'와 '업무효율성', '현장 관계자의 조경 전문성', '조경디자인 감리'의 측면이, 부정적 영향을 준 범주로 '현장자원', '외부 영향력의 작용'의 측면이 각각 도출되었다. 종합할 때, 본 공원 조성의 핵심범주는 "적극적 공감과 소통으로 이룬 공원조성 모델"로 해석되었다. 이들 사항은 연구결과로서 다음과 같은 연구제안과 연결된다. 첫째, 발주처의 설계사 신뢰와 관행적 행정절차 개선의 필요성, 둘째, 공원조성과정에 조경전문인력 투입의 중요성, 셋째, 설계 발전을 위한 제반 노력의 필요성, 넷째, 현장 원형자원 및 경관 보존의 중요성, 다섯째, 적극적인 사회적 참여를 통한 기회의 확충 등이 그것이다. 대 내외적으로 우수한 평가를 받는 공원조성 이면에 존재했던 사실을 파악코자한 본 연구는 관행적인 정량적 사후평가와 달리 공원조성과 관련된 사회적 관계망을 정성적, 객관적, 구조적으로 해석한 의의를 보유한다. 향후 심층적 사후평가 연구의 지속을 통한 조경분야관련 행정과 제도개선을 기대한다.

다중 레이블 분류의 정확도 향상을 위한 스킵 연결 오토인코더 기반 레이블 임베딩 방법론 (Label Embedding for Improving Classification Accuracy UsingAutoEncoderwithSkip-Connections)

  • 김무성;김남규
    • 지능정보연구
    • /
    • 제27권3호
    • /
    • pp.175-197
    • /
    • 2021
  • 최근 딥 러닝 기술의 발전으로 뉴스, 블로그 등 다양한 문서에 포함된 텍스트 분석에 딥 러닝 기술을 활용하는 연구가 활발하게 수행되고 있다. 다양한 텍스트 분석 응용 가운데, 텍스트 분류는 학계와 업계에서 가장 많이 활용되는 대표적인 기술이다. 텍스트 분류의 활용 예로는 정답 레이블이 하나만 존재하는 이진 클래스 분류와 다중 클래스 분류, 그리고 정답 레이블이 여러 개 존재하는 다중 레이블 분류 등이 있다. 특히, 다중 레이블 분류는 여러 개의 정답 레이블이 존재한다는 특성 때문에 일반적인 분류와는 상이한 학습 방법이 요구된다. 또한, 다중 레이블 분류 문제는 레이블과 클래스의 개수가 증가할수록 예측의 난이도가 상승한다는 측면에서 데이터 과학 분야의 난제로 여겨지고 있다. 따라서 이를 해결하기 위해 다수의 레이블을 압축한 후 압축된 레이블을 예측하고, 예측된 압축 레이블을 원래 레이블로 복원하는 레이블 임베딩이 많이 활용되고 있다. 대표적으로 딥 러닝 모델인 오토인코더 기반 레이블 임베딩이 이러한 목적으로 사용되고 있지만, 이러한 기법은 클래스의 수가 무수히 많은 고차원 레이블 공간을 저차원 잠재 레이블 공간으로 압축할 때 많은 정보 손실을 야기한다는 한계가 있다. 이에 본 연구에서는 오토인코더의 인코더와 디코더 각각에 스킵 연결을 추가하여, 고차원 레이블 공간의 압축 과정에서 정보 손실을 최소화할 수 있는 레이블 임베딩 방법을 제안한다. 또한 학술연구정보서비스인 'RISS'에서 수집한 학술논문 4,675건에 대해 각 논문의 초록으로부터 해당 논문의 다중 키워드를 예측하는 실험을 수행한 결과, 제안 방법론이 기존의 일반 오토인코더 기반 레이블 임베딩 기법에 비해 정확도, 정밀도, 재현율, 그리고 F1 점수 등 모든 측면에서 우수한 성능을 나타냄을 확인하였다.

적정조세부담률 추정을 통한 한국 복지국가 증세가능성에 관한 연구 (Feasibility of Tax Increase in Korean Welfare State via Estimation of Optimal Tax burden Ratio)

  • 김성욱
    • 한국사회정책
    • /
    • 제20권3호
    • /
    • pp.77-115
    • /
    • 2013
  • 본 연구는 최근 쟁점이 되고 있는 복지재정 논의에 실증적 근거를 제공하기 위해 설명변수의 내생성을 고려하는 하우스만 테일러 방식을 활용하여 OECD 주요 회원 국가들을 대상으로 적정조세부담의 추정을 시도하였다. 또한 모형 내 조세수입?지출 간 주요 이론적 가설을 반영하여 국제조세비교지수(ITC)를 도출함으로써 국가별 실질 조세수준을 비교하고, 우리나라의 증세가능성에 대해 검토하였다. 분석결과, 일반적으로 조세부담 수준이 높으면 복지지출 수준도 높은 것으로 나타나 규모 측면에서 '고부담?고복지'의 연결구조가 확인되었으나, 최근 들어 저부담 상태에 돌입했음도 알 수 있었다. 한편 우리나라는 1990년대 말까지 저부담이 지속되다가 IMF 외환위기 이후부터 조세부담이 급증하였으나, 경기침체와 감세정책의 영향으로 2009년 이후 저부담 국면으로 재진입한 것으로 나타났다. 그러나 2010년 현재 우리나라의 적정조세부담율은 연구모델에 따라 GDP 대비 25.8%~26.5%로 나타나 약 0.7~ 1.4%p(8.2~16.4조 원)의 증세가 가능한 '저부담?저비율' 국가로 조사되어 증세를 위한 세제개편의 성공 가능성이 다른 OECD 국가들보다 높은 것으로 나타났다. 다만 사회보장기여금과 소비세 인상 방안은 상대적으로 높은 ITC 수준을 고려할 때 다른 세목의 인상에 비해 재정운용 측면에서 적절하지 않은 것으로 분석되었다. 하지만 증세여력이 있다고 하여 반드시 증세가 필요한 것은 아닐 뿐 아니라, 적정조세부담률이 그 자체로 '적정 수준'을 보여주는 것은 아니다. 증세논의는 특정 조세혼합(tax mix)에 내포된 국가별 상이한 정치 경제발전 모형과 제도 역사적 속성에 대한 포괄적인 이해를 수반할 필요가 있기 때문이다. 그럼에도 본 연구는 한국 복지국가 증세논의를 보다 경험적으로 정교화함으로써 향후 조세수입과 복지지출의 연계조정 등 조세제도 개혁 방향에 대한 준거를 마련했다는 데 의의가 있다.

증권신고서의 TF-IDF 텍스트 분석과 기계학습을 이용한 공모주의 상장 이후 주가 등락 예측 (The prediction of the stock price movement after IPO using machine learning and text analysis based on TF-IDF)

  • 양수연;이채록;원종관;홍태호
    • 지능정보연구
    • /
    • 제28권2호
    • /
    • pp.237-262
    • /
    • 2022
  • 본 연구는 개인투자자들의 투자의사결정에 도움을 주고자, 증권신고서의 TF-IDF 텍스트 분석과 기계학습을 이용해 공모주의 상장 5거래일 이후 주식 가격 등락을 예측하는 모델을 제시한다. 연구 표본은 2009년 6월부터 2020년 12월 사이에 신규 상장된 691개의 국내 IPO 종목이다. 기업, 공모, 시장과 관련된 다양한 재무적 및 비재무적 IPO 관련 변수와 증권신고서의 어조를 분석하여 예측했고, 증권신고서의 어조 분석을 위해서 TF-IDF (Term Frequency - Inverse Document Frequency)에 기반한 텍스트 분석을 이용해 신고서의 투자위험요소란의 텍스트를 긍정적 어조, 중립적 어조, 부정적 어조로 분류하였다. 가격 등락 예측에는 로지스틱 회귀분석(Logistic Regression), 랜덤 포레스트(Random Forest), 서포트벡터머신(Support Vector Machine), 인공신경망(Artificial Neural Network) 기법을 사용하였고, 예측 결과 IPO 관련 변수와 증권신고서 어조 변수를 함께 사용한 모델이 IPO 관련 변수만을 사용한 모델보다 높은 예측 정확도를 보였다. 랜덤 포레스트 모형은 1.45%p 높아진 예측 정확도를 보였으며, 인공신공망 모형과 서포트벡터머신 모형은 각각 4.34%p, 5.07%p 향상을 보였다. 추가적으로 모형간 차이를 맥니마 검정을 통해 통계적으로 검증한 결과, 어조 변수의 유무에 따른 예측 모형의 성과 차이가 유의확률 1% 수준에서 유의했다. 이를 통해, 증권신고서에 표현된 어조가 공모주의 가격 등락 예측에 영향을 미치는 요인이라는 것을 확인할 수 있었다.

작물모형 입력자료용 일사량 추정을 위한 지역 특이적 AP 계수 평가 (Assessment of Region Specific Angstrom-Prescott Coefficients on Uncertainties of Crop Yield Estimates using CERES-Rice Model)

  • 조영상;정재민;현신우;김광수
    • 한국농림기상학회지
    • /
    • 제24권4호
    • /
    • pp.256-266
    • /
    • 2022
  • 일사량은 작물모형의 구동에 필수적인 요소지만, 일사량의 직접관측은 다른 기상자료들과 다르게 많은 인적, 물적 자원이 필요하다. 직접 일사량을 측정하는 대신 다른 기상자료를 통해 일사량을 추정하는 여러 방식이 존재하고 그중 대표적인 방법이 일조시간을 통해 일사량을 추정하는 Angstrom-Prescott 모델이다. Frere and Popov(1979)에 의해 전세계의 기후를 세 분류로 나누어 일조시간을 일사량으로 변환하는 AP 계수(APFrere)가 제시되었고, 국내 18개 종관기상관측소에서 30년간 관측한 일단위 일사량과 일조량 관측자료를 통해 AP계수를 경험적으로 도출한 계수(APChoi)가 Choi et al.(2010)에 의해 제시되었다. 본 연구에서는 2012년부터 2021년까지 일사량 관측값(SObs)과 APFrere와 APChoi를 통해 도출한 일사량(SFrere, SChoi)을 NRMSE와 t검정을 통해 분석하였고, 이를 DSSAT 작물모형에 입력모수로 사용하여 벼 품종 오대, 화성 및 추청에 대한 생육모의를 하였다. 일사량 추정 결과 일사량의 추정값과 측정값 사이에는 12%에서 22%사이의 오차가 존재하였고, 이를 3월부터 9월 사이의 생육기간에 한정하여 누적 일사량을 계산하면 오차가 줄었다. 18개의 지역중 관찰값과 생육기간의 누적 일사량은 SFrere의 경우에 10개의 지역에서 SChoi 보다 SObs와 가까웠고, 일일 일사량의 오차율을 통해 분석하였을때 SFrere가 12개 지역에서 더 가까웠다.

1차원 및 2차원 물리서식처 모형을 활용한 안동댐 하류 하천의 환경생태유량 및 어류서식처 추정 (Estimation of ecological flow and fish habitats for Andong Dam downstream reach using 1-D and 2-D physical habitat models)

  • 김용원;이지완;우소영;김수홍;이종진;김성준
    • 한국수자원학회논문집
    • /
    • 제55권12호
    • /
    • pp.1041-1052
    • /
    • 2022
  • 본 연구는 낙동강 본류의 안동댐 하류(4,565.7 km2) 하천을 대상으로 1차원 물리적 서식처 모형인 PHABSIM과 2차원 물리적 서식처 모형인 River2D를 활용하여 대상어종에 대해 환경생태유량을 산정하고 어류서식처에 대한 2차원 공간분석을 수행하였다. 서식처 모형의 구축을 위해 낙동강유역의 하천기본계획보고서를 활용하여 하천단면정보와 수리학적 입력자료를 수집하였다. PHABSIM 구축범위는 구담수위관측소(GD)로부터 약 410.0 m, River2D의 경우 GD를 포함한 약 6.0 km에 대해 구축하였다. 대상어종 선정 및 HSI 구축을 위해 대상하천의 하류에 위치한 풍지교에서 어류 현장조사를 수행하였다. 어류 현장조사 결과, 피라미가 우점종으로 나타나 피라미(Zacco platypus)를 대상어종으로 선정하였고 피라미의 물리적 서식처 특성을 활용하여 HSI를 구축하였다. 피라미의 최적 HSI 범위는 유속에서 0.3~0.5 m/s, 수심에서 0.4~0.6 m, 그리고 하상재료는 모래에서 잔자갈로 나타났다. HSI를 PHABSIM에 적용하여 환경생태유량을 산정한 결과, 대상하천의 최적 환경생태유량은 20.0 m3/sec로 산정되었다. River2D를 활용하여 어류서식처의 2차원 공간분석을 수행한 결과 WUA는 환경생태유량 조건에서 107,392.0 m2/1000 m으로 산정되었고, Q355 조건과 비교하여 하천 전반적으로 어류서식처가 확보되는 것을 확인하였다.