DOI QR코드

DOI QR Code

작물모형 입력자료용 일사량 추정을 위한 지역 특이적 AP 계수 평가

Assessment of Region Specific Angstrom-Prescott Coefficients on Uncertainties of Crop Yield Estimates using CERES-Rice Model

  • 조영상 (서울대학교 식물생산과학부) ;
  • 정재민 (서울대학교 식물생산과학부) ;
  • 현신우 (서울대학교 농림생물자원학부) ;
  • 김광수 (서울대학교 식물생산과학부)
  • Young Sang, Joh (Department of Plant Science, Seoul National University ) ;
  • Jaemin, Jung (Department of Plant Science, Seoul National University ) ;
  • Shinwoo, Hyun (Department of Agriculture, Forestry and Bioresources, Seoul National University) ;
  • Kwang Soo, Kim (Department of Plant Science, Seoul National University )
  • 투고 : 2022.09.16
  • 심사 : 2022.12.14
  • 발행 : 2022.12.30

초록

일사량은 작물모형의 구동에 필수적인 요소지만, 일사량의 직접관측은 다른 기상자료들과 다르게 많은 인적, 물적 자원이 필요하다. 직접 일사량을 측정하는 대신 다른 기상자료를 통해 일사량을 추정하는 여러 방식이 존재하고 그중 대표적인 방법이 일조시간을 통해 일사량을 추정하는 Angstrom-Prescott 모델이다. Frere and Popov(1979)에 의해 전세계의 기후를 세 분류로 나누어 일조시간을 일사량으로 변환하는 AP 계수(APFrere)가 제시되었고, 국내 18개 종관기상관측소에서 30년간 관측한 일단위 일사량과 일조량 관측자료를 통해 AP계수를 경험적으로 도출한 계수(APChoi)가 Choi et al.(2010)에 의해 제시되었다. 본 연구에서는 2012년부터 2021년까지 일사량 관측값(SObs)과 APFrere와 APChoi를 통해 도출한 일사량(SFrere, SChoi)을 NRMSE와 t검정을 통해 분석하였고, 이를 DSSAT 작물모형에 입력모수로 사용하여 벼 품종 오대, 화성 및 추청에 대한 생육모의를 하였다. 일사량 추정 결과 일사량의 추정값과 측정값 사이에는 12%에서 22%사이의 오차가 존재하였고, 이를 3월부터 9월 사이의 생육기간에 한정하여 누적 일사량을 계산하면 오차가 줄었다. 18개의 지역중 관찰값과 생육기간의 누적 일사량은 SFrere의 경우에 10개의 지역에서 SChoi 보다 SObs와 가까웠고, 일일 일사량의 오차율을 통해 분석하였을때 SFrere가 12개 지역에서 더 가까웠다.

Empirical models including the Angstrom-Prescott (AP) model have been used to estimate solar radiation at sites, which would support a wide use of crop models. The objective of this study was to estimate two sets of solar radiation estimates using the AP coefficients derived for climate zone (APFrere) and specific site (APChoi), respectively. The daily solar radiation was estimated at 18 sites in Korea where long-term measurements of solar radiation were available. In the present study, daily solar radiation and sunshine duration were collected for the period from 2012 to 2021. Daily weather data including maximum and minimum temperatures and rainfall were also obtained to prepare input data to a process-based crop model, CERES-Rice model included in Decision Support System for Agrotechnology Transfer (DSSAT). It was found that the daily estimates of solar radiation using the climate zone specific coefficient, SFrere, had significantly less error than those using site-specific coefficients SChoi (p<0.05). The cumulative values of SFrere for the period from march to September also had less error at 55% of study sites than those of SChoi. Still, the use of SFrere and SChoi as inputs to the CERES-Rice model resulted in slight differences between the outcomes of crop growth simulations, which had no significant difference between these outputs. These results suggested that the AP coefficients for the temperate climate zone would be preferable for the estimation of solar radiation. This merits further evaluation studies to compare the AP model with other sophisticated approaches such as models based on satellite data.

키워드

과제정보

이 논문은 본 연구는 농림축산식품부의 재원으로 농림식품기술기획평가원의 농업에너지자립형 산업모델기술개발 사업의 지원을 받았습니다(321075-02-1-SB010).

참고문헌

  1. Abraha, M. G., and M. J. Savage, 2008: Comparison of estimates of daily solar radiation from air temperature range for application in crop simulations. Agricultural and Forest Meteorology 148(3), 401-416. https://doi.org/10.1016/j.agrformet.2007.10.001
  2. Aladenola, O. O., and C. A. Madramootoo, 2004: Evaluation of solar radiation estimation methods for reference evapotranspiration estimation in Canada. Theoretical and applied climatology 118, 377-385. https://doi.org/10.1007/s00704-013-1070-2
  3. Almorox, J. Y., and C. J. E. C. Hontoria, 2004: Global solar radiation estimation using sunshine duration in Spain. Energy Conversion and Management 45(9-10), 1529-1535. https://doi.org/10.1016/j.enconman.2003.08.022
  4. Ampratwum, D. B., and A. S. Dorvlo, 1999: Estimation of solar radiation from the number of sunshine hours. Applied energy 63(3), 161-167. https://doi.org/10.1016/S0306-2619(99)00025-2
  5. Angstrom, A., 1924: Solar and terrestrial radiation. Report to the international commission for solar research on actinometric investigations of solar and atmospheric radiation. Quarterly Journal of the Royal Meteorological Society 50(210), 121-126. https://doi.org/10.1002/qj.49705021008
  6. Antonopoulos, V. Z., D. M. Papamichail, V. G. Aschonitis, and A. V. Antonopoulos, 2019: Solar radiation estimation methods using ANN and empirical models. Computers and Electronics in Agriculture 160, 160-167. https://doi.org/10.1016/j.compag.2019.03.022
  7. Aubry, C., F. Papy, and A. Capillon, 1998: Modelling decision-making processes for annual crop management. Agricultural systems 56(1), 45-65. https://doi.org/10.1016/S0308-521X(97)00034-6
  8. Besharat, F., A. A. Dehghan, and A. R. Faghih, 2013: Empirical models for estimating global solar radiation: A review and case study. Renewable and Sustainable Energy Reviews 21, 798-821. https://doi.org/10.1016/j.rser.2012.12.043
  9. Bouman, B. A. M., 2001: ORYZA2000: modeling lowland rice. IRRI.
  10. Choi, M.-H., and J. I. Yun, U. Chung, and K. H. Moon, 2010: Performance of Angstrom-Prescott Coefficients under Different Time Scales in Estimating Daily Solar Radiation in South Korea. Korean Journal of Agricultural and Forest Meteorology 12(4), 232-237. (in Korean with English abstract) https://doi.org/10.5532/KJAFM.2010.12.4.232
  11. Despotovic, M., V. Nedic, D. Despotovic, and S. Cvetanovic, 2015: Review and statistical analysis of different global solar radiation sunshine models. Renewable & Sustainable Energy Reviews 52, 1869-1880. https://doi.org/10.1016/j.rser.2015.08.035
  12. Duffie, J. A., W. A. Beckman, and N. Blair, 2013: Solar engineering of thermal processes. John Wiley & Sons.
  13. Escobar, R. A., C. Cortes, A. Pino, M. Salgado, E. B. Pereira, F. R. Martins, J. Boland, and J. M. Cardemil, 2015: Estimating the potential for solar energy utilization in Chile by satellite-derived data and ground station measurements. Solar Energy 121, 139-151. https://doi.org/10.1016/j.solener.2015.08.034
  14. Frere, M., and G. F. Popov, 1979: Agrometeorological crop monitoring and forecasting.
  15. Hunt, L. A., L. Kuchar, and C. J. Swanton, 1998: Estimation of solar radiation for use in crop modeling. Agricultural and Forest Meteorology 91(3-4), 293-300. https://doi.org/10.1016/S0168-1923(98)00055-0
  16. Hyun, S., and K. S. Kim, 2016: Assessment of the Angstrom-Prescott coefficients for estimation of solar radiation in Korea. Korean Journal of Agricultural and Forest Meteorology 18(4), 221-232. (in Korean with English abstract) https://doi.org/10.5532/KJAFM.2016.18.4.221
  17. Jones, J. W., G. Hoogenboom, C. H. Porter, K. J. Boote, W. D. Batchelor, L. A. Hunt, P. W. Wilkens, U. Singh, A. J. Gijsman, and J. T. Ritchie, 2003: The DSSAT cropping system model. European Journal of Agronomy 18(3-4), 235-265. https://doi.org/10.1016/S1161-0301(02)00107-7
  18. Kang, D., S. Hyun, and K. S. Kim, 2019: Development of a deep neural network model to estimate solar radiation using temperature and precipitation. Korean Journal of Agricultural and Forest Meteorology 21(2), 85-96. (in Korean with English abstract) https://doi.org/10.5532/KJAFM.2019.21.2.85
  19. Keating, B. A., P. S. Carberry, G. L. Hammer, M. E. Probert, M. J. Robertson, D. Holzworth, N. I. Huth, J. N. G. Hargreaves, H. Meinke, Z. Hochman, G. McLean, K. Verburg, V. Snow, J. P. Dimes, M. Silburn, E. Wang, S. Brown, K. L. Bristow, S. Asseng, S. Chapman, R. L. McCown, D. M. Freebairn, and C. J. Smith, 2003: An overview of APSIM, a model designed for farming systems simulation. European Journal of Agronomy 18, 267-288. https://doi.org/10.1016/S1161-0301(02)00108-9
  20. Kim, C.-K., H.-G. Kim, Y.-H. Kang, B.-Y. Kim, 2020a: Evaluation of Satellite-Derived Solar Irradiance and Limitation in Ground Observation. Journal of the Korean Solar Energy Society 40(6), 121-134. (in Korean with English abstract) https://doi.org/10.7836/kses.2020.40.6.121
  21. Kim, D.-J., S.-O. Kim, K. H. Moon, and J. I. Yun, 2012: An Outlook on Cereal Grains Production in South Korea Based on Crop Growth Simulation under the RCP8.5 Climate Change Scenarios. Korean Journal of Agricultural and Forest Meteorology 14(3), 132-141. (in Korean with English abstract) https://doi.org/10.5532/KJAFM.2012.14.3.132
  22. Kim, D.-J., J.-H. Roh, C.-K. Kim, and J. I. Yun, 2013: The Influence of Shifting Planting Date on Cereal Grains Production under the Projected Climate Change. Korean Journal of Agricultural and Forest Meteorology 15(1), 26-39. (in Korean with English abstract) https://doi.org/10.5532/KJAFM.2013.15.1.026
  23. Kim, K. S., J. Kim, and S. Hyun, 2020b: Analysis of Crop Survey Protocols to Support Parameter Calibration and Verification for Crop Models of Major Vegetables. Korean Journal of Agricultural and Forest Meteorology 22(2), 68-78. (in Korean with English abstract) https://doi.org/10.5532/KJAFM.2020.22.2.68
  24. Kim, K. S., S.-O. Kim, J. H. Kim, K. H. Moon, J. H. Shin, and J. Cho, 2018: Development and application of crop models in Korea. Korean Journal of Agricultural and Forest Meteorology 20(2), 145-148. (in Korean with English abstract) https://doi.org/10.5532/KJAFM.2018.20.2.145
  25. Li, T., O. Angeles, M. Marcaida III, E. Manalo, M. P. Manalili, A. Radanielson, and S. Mohanty, 2017: From ORYZA2000 to ORYZA (v3): An improved simulation model for rice in drought and nitrogen-deficient environments. Agricultural and Forest Meteorology 237-238, 246-256. https://doi.org/10.1016/j.agrformet.2017.02.025
  26. Loague, K., and R. E. Green, 1991: Statistical and graphical methods for evaluating solute transport models: overview and application. Journal of contaminant hydrology 7, 51-73. https://doi.org/10.1016/0169-7722(91)90038-3
  27. Mousavi, R., A. A. Sabziparvar, S. Marofi, N. A. Ebrahimi Pak, and M. Heydari, 2015: Calibration of the Angstrom-Prescott solar radiation model for accurate estimation of reference evapotranspiration in the absence of observed solar radiation. Theoretical and Applied Climatology 119, 43-54. https://doi.org/10.1007/s00704-013-1086-7
  28. Noia, M., C. F. Ratto, and R. Festa, 1993: Solar irradiance estimation from geostationary satellite data: I. Statistical models. Solar Energy 51(6), 449-456. https://doi.org/10.1016/0038-092X(93)90130-G
  29. Ogelman, H., A. Ecevit, and E. Tasdemiroglu, 1984: A new method for estimating solar radiation from bright sunshine data. Solar Energy 33(6), 619-625. https://doi.org/10.1016/0038-092X(84)90018-5
  30. Prescott, J. A., 1940: Evaporation from a water surface in relation to solar radiation. Transactions of the Royal Society of South Australia 46, 114-118.
  31. Prieto, J. I., and D. Garcia, 2022: Modified temperature-based global solar radiation models for estimation in regions with scarce experimental data. Energy Conversion and Management 268, 115950. https://doi.org/10.1016/j.enconman.2022.115950
  32. R Core Team, 2022: R: A language and environment for statistical computing. R Foundation for Statistical Computing.
  33. Reynolds, M., M. Kropff, J. Crossa, J. Koo, G. Kruseman, A. Molero Milan, J. Rukoski, U. Schulthess, B., Singh, K. Sonder, H. Tonnang, and V. Vadez, 2018: Role of modelling in international crop research: Overview and some case studies. Agronomy, 8(12), 291. https://doi.org/10.3390/agronomy8120291
  34. Russo, D., and J. Zou, 2019: How much does your data exploration overfit? controlling bias via information usage. IEEE Transactions on Information Theory 66(1), 302-323. https://doi.org/10.1109/tit.2019.2945779
  35. Samuel, T. D. M. A., 1991: Estimation of global radiation for Sri Lanka. Solar Energy 47(5), 333-337. https://doi.org/10.1016/0038-092X(91)90026-S
  36. Shim, K. M., K. A. Roh, K. H. So, G. Y. Kim, H. C. Jeong, and D. B. Lee, 2010: Assessing impacts of global warming on rice growth and production in Korea. Climate Change Research 1(2), 121-131. (in Korean with English abstract)
  37. Swartman, R. K., and O. Ogunlade, 1967: Solar radiation estimates from common parameters. Solar energy 11(3-4), 170-172.
  38. Teke, A., H. B. Yildirim, and O. Celik, 2015: Evaluation and performance comparison of different models for the estimation of solar radiation. Renewable and Sustainable Energy Reviews 50, 1097-1107. https://doi.org/10.1016/j.rser.2015.05.049
  39. Trnka, M., J. Eitzinger, P. Kapler, M. Dubrovsky, D. Semeradova, Z. E. Zalud, and H. Formayer, 2007: Effect of estimated daily global solar radiation data on the results of crop growth models. Sensors 7(10), 2330-2362. https://doi.org/10.3390/s7102330
  40. White, J. W., G. Hoogenboom, P. W. Wilkens, P. W. Stackhouse Jr, and J. M. Hoel, 2011: Evaluation of satellite-based, modeled-derived daily solar radiation data for the continental United States. Agronomy Journal 103(4), 1242-1251. https://doi.org/10.2134/agronj2011.0038
  41. Yang, C.-H., T.-K. Kim, J.-H. Ryu, J.-D. Kim, and K.-Y. Jung, 2009: Soil Characteristic of Plow and Compaction Layer in Fluvio-marine Deposit Paddy Soil. Korean Journal of Soil Science and Fertilizer 42(5), 364-370. (in Korean with English abstract)
  42. Zhang, J., L. Zhao, S. Deng, W. Xu, and Y. Zhang, 2017: A critical review of the models used to estimate solar radiation. Renewable & Sustainable Energy Reviews 70, 314-329. https://doi.org/10.1016/j.rser.2016.11.124