DOI QR코드

DOI QR Code

Evaluation of Rice Protein Content Variation on Cultivation and Environmental Conditions

재배 및 환경조건에 따른 쌀 단백질 함량 변동 평가

  • Yun-Ho, Lee (Crop physiology and production, National Institute of Crop Science) ;
  • Jeong-Won, Kim (Crop physiology and production, National Institute of Crop Science) ;
  • Jae-Hyeok, Jeong (CPlanning and Coordination Div., National Institute of Crop Science) ;
  • Woon-Ha, Hwang (Crop physiology and production, National Institute of Crop Science) ;
  • Hyeon-Seok, Lee (Crop physiology and production, National Institute of Crop Science) ;
  • Seo-Yeong, Yang (Crop physiology and production, National Institute of Crop Science) ;
  • Chung-Keun, Lee (Crop physiology and production, National Institute of Crop Science)
  • 이윤호 (국립식량과학원 작물재배생리과) ;
  • 김정원 (국립식량과학원 작물재배생리과) ;
  • 정재혁 (국립식량과학원 기획조정과) ;
  • 황운하 (국립식량과학원 작물재배생리과) ;
  • 이현석 (국립식량과학원 작물재배생리과) ;
  • 양서영 (국립식량과학원 작물재배생리과) ;
  • 이충근 (국립식량과학원 작물재배생리과)
  • Received : 2022.11.29
  • Accepted : 2022.12.20
  • Published : 2022.12.30

Abstract

The effect of year, varieties, nitrogen application, and transplant time were examined in relation to rice of protein. An experiment was conducted using 12 rice varieties to investigate the effect of management and weather conditions on brown rice protein of during the filling stage. The transplanting time was set to be three groups including early, medium, and late timing. The nitrogen application was set to be 0 N kg / 10a, 9N kg / 10a and 18 N kg / 10a to examine the effect of fertilizer management on protein content. Field experiments were conducted in three growing seasons including 2019, 2020, and 2021. The brown rice of protein content were 5.7%, 5.9%, and 6.6% under early, medium, and late transplanting time conditions, respectively. The protein content differ by variety. For example, Chucheong, Hopum, Ilpum, Mipum, Odae, Saenuri, and Saeilmi had more than 6.1%, and Chindeul, Shindongjin, Samkwang, Unkwang, Younhojinmi were less than 6.1%. Nitrogen content was 5.7% for 0kgN /10a, 6.1% for 9kgN /10a, and 6.8% for 18kgN /10a. The contribution of the characteristics to the protein content was highest in nitrogen content (38.8%), followed by transplanting time (13.7%), variety (8.2%), and year (3.5%). The average temperature for 20 days after heading time was the highest (9.3%), followed by sunshine duration (3.9%) and solar radiation (3.5%). Our results revealed that brown rice protein content was determined to be affected by changes in average temperature, sunshine duration and solar radiation for 20 days after heading time. This suggested that assessment of temperature and solar radiation after heading time would indicate the degree of rice quality in terms of protein.

본 연구는 연차, 이앙시기, 품종, 질소 시비량, 연차 및 기상 환경과 연계하여 쌀 단백질 함량 변동에 영향을 미치는 기여도와 요인 분석한 연구 결과이다. 이앙시기의 단백질 함량은 적식 5.7%, 적식 5.9%, 만식 6.6%이었으며, 품종에서는 추청, 호평, 일품, 미품, 오대, 새누리, 새일미들은 6.1% 이상이었고, 친들, 신동진, 삼광, 운광 영호진미들은 6.1% 이하였다. 질소 시비량에서는 무비 5.7%, 보비 6.1% 및 다비 6.8%이었다. 연차, 이앙 시기, 품종, 질소 시비량으로 86.9%가 현미 단백질 함량 설명이 가능하였으며, 단백질 함량에 미치는 특성들의 기여도는 질소 시비량 (38.8%)로 가장 높았고 그 다음으로는 이앙 시기(13.7%) 그리고 품종(8.2%), 연도(3.5%) 순이었다. 출수 이후 20일과 40일의 기상환경으로 46.8%가 현미 단백질 함량에 대해 설명이 가능하였으며, 출수 이후 20일 평균 온도(9.3%) 가장 높았고 그 다음으로 일조시간(3.9%) 그리고 일사량(3.5%) 순으로 기여하였다. 쌀 단백질 함량은 출수 이후 20일간 평균 온도와 일조 시간 및 일사량 변화에 영향을 받는 것으로 판단되었으며, 낮은 쌀 단백질을 생산하기위해서는 출수 이후 적정 등숙 온도 및 일사량을 확보하는 것이 중요하다.

Keywords

Acknowledgement

본 연구는 농촌진흥청 작물시험연구사업(과제 번호: PJ014296)의 지원에 의해 수행되었습니다.

References

  1. An, K. N, I. Lee., S. H, Shin, H. K. Kyoung, O. D. Kwon, H. G. Park, H. R. Shin, and H. Y. Kim, 2017: Characterization of seasonal and annual variations in quality of rice brands distributed in Jeonnam province. Korean Journal of Crop Science 62(2), 79-86. https://doi.org/10.7740/KJCS.2017.62.2.079
  2. Aomori-ken, 2011: Key point for producing delicious rice. Rice improvement guidelines, 137-144.
  3. Choi, H. C., S. Y. Cho, and K. H, Kim, 1990: Varietal difference and environmental variation in protein content and/ or amino acid composition of rice seed. Korean Journal of Crop Science 35(5), 379-386.
  4. Choi, W. Y., J. K. Nam, S. S. Kim, J. H. Lee, J. H. Kim, H. K. Park, N. H. Back, M. G. Choi, C. K. Kim, and K. Y. Jung, 2005: Optimum transplanting date for production quality rice in Honam plain area. Korean Journal of Crop Science 50(6), 435-441.
  5. Cock, J. H., and S. Yoshida, 1972: Accumulation of 14C-labelled carbohydrate before flowing and its subsequent redistribution and respiration in the rice plant. Japan Journal of Crop Science 41(2), 226-234. https://doi.org/10.1626/jcs.41.226
  6. Introduction of Korean Law Information Center, 2022: Grain Management Act. https://www.law.go.kr
  7. Ishimaru, T., Y. Nsksysms, N. Aoki, A. Ohsumi, K. Suzuki, T. Umemoto, S. Yoshinaga, and M. Kondo, 2018: High temperature and low solar radiation during ripening differentially affect the composition of milky-white grains in rice (Oryza sativa L.). Plant Production Science 21(4), 370-379. https://doi.org/10.1080/1343943x.2018.1520047
  8. Ishzuki H, H. Kikukawa, and K. Saitoh, 2013: Effect of shading high-temperature treatments on thickness and appearance quality of brown rice and palatability of cooked rice- comparisons between 2009 and 2010. Japan Journal of Crop Science 82(3), 242-251. https://doi.org/10.1626/jcs.82.242
  9. Jung, K. H., 2019: Value and utilization of rice protein. Food Science and Industry 52(1), 60-67. https://doi.org/10.23093/FSI.2019.52.1.60
  10. Kim, J. I., H. C. Choi, K. H. Kim, J. K. Ahn, N. B. Park, D. S. Park, C. S. Kim, J. Y. Lee, and J. K. Kim, 2009: Varietal response to quality and palatability of cooked rice influenced by different nitrogen applications. Korean Journal of Crop Science 54(1), 13-23.
  11. Kim, K. Y., J. C. Ko, C. S. Woon, H. S. Park., M. K. Baek, J. K. Nam, B. K. Kim, and J. H. Lee, 2014: Effect of low radiation during grain filling stage on rice yield and grain quality. Korean Journal of Crop Science 59(2), 174-180. https://doi.org/10.7740/KJCS.2014.59.2.174
  12. KOSIS, 2022: Food grain consumption survey in 2021. Korean Statistical Information Service.
  13. Lee, S. H., E. H. Son, S. C. Hong, S. H. Oh, J. Y. Lee, J. H. Park, S. H. Woo, and C. W. Lee, 2016: Growth and yield under low solar radiation during the reproductive growth stages of rice plants. Korean Journal of Crop Science 61(2), 87-91. https://doi.org/10.7740/KJCS.2016.61.2.087
  14. Li, X., L. Wu, X. Geng, X. Xia, X. Wang, Z. Xu, and Q. Xu, 2018: Deciphering the environmental impacts on rice quality for different rice cultivated areas. Rice 11(7), 3954.
  15. Matsunam, T., T. Kodama, H. Sano, and K. Kon, 2016: Approaches to maximize the palatability of rice. Japan Journal of Crop Science 85(3), 231-240.
  16. Ohdaira, Y., R. Sasaki, and H. Takeda, 2013: Analysis of factors affecting seed protein compositions and protein contents in rice of seed-protein mutant cultivars under different cropping seasons. Japan Journal of Crop Science 82(1), 18-27. https://doi.org/10.1626/jcs.82.18
  17. RDA (Rural Development Administration), 2015: The advanced technology of rice quality. 434pp.
  18. Seong, D. G., Y. G. Kim, S. M, Yun, H. C. Kim, J. J. Lee, C. S. Kim, and J. S. Chung, 2022: Studies on How Changing the Transplanting Time Affects Rice Quality and Yield. Korean Journal of Breeding Science 54(3), 177-183. https://doi.org/10.9787/KJBS.2022.54.3.177
  19. Uchikawa, O., and M. Araki, 2010: Effects of the nitrogen nutrient condition and nitrogen application on kernel quality of rice. Japan Journal of Crop Science 79(4), 450-459.
  20. Xing, Z. P., P. Wu, M. Zhu, H. J. Qian, Y. J. Hu, B. W, Guo, H. Y. Wei, K. Xu, Z. Y. Huo, Q. G, Dai, and H. C. Zhang, 2017: Temperature and solar radiation utilization of rice for yield formation with different mechanized planting methods in the lower reaches of the Yangtze River, China. Journal of Integrative Agriculture 16(9), 1923-1935. https://doi.org/10.1016/s2095-3119(16)61596-4
  21. Xuan, Y., Y. Yi, H. Liang, S. Wei, L. Jiang, I. Ali, S. Ullah, and Q. Zhao, 2019: Effects of meteorological factors on the yield and quality of special rice in different periods after anthesis. Agricultural Sciences 10(4), 451-475. https://doi.org/10.4236/as.2019.104036
  22. Yun, S. H., and J. T. Lee, 2001: Climate change impacts on optimum ripening periods of rice plant and its countermeasure in rice cultivation. Korean Society of Agricultural and Forest Meteorology 3(1), 55-70.