• Title/Summary/Keyword: input impedance matching

Search Result 155, Processing Time 0.024 seconds

The fabrication of a coaxial line impedance transformer with low transmission loss and wideband operation range (저손실 광대역 동작 특성을 가지는 동축 선로 임피던스 변환기 제작)

  • Park, Ung-hee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.12
    • /
    • pp.2241-2248
    • /
    • 2017
  • The coaxial line impedance transformer that performs impedance conversion using the coupling of two or more coaxial lines of the same length is often used for impedance matching in the low frequency region due to many advantages. This paper measures the phase and magnitude characteristics of each coaxial line in a 4:1 coaxial line impedance transformer using two 100mm coaxial lines. This experiment shows that it is more effective to make the length of the auxiliary coaxial line shorter than the main coaxial line by about 5 mm in order to realize a low loss impedance transformer. In addition, it measures the transmission characteristics by directly connecting a 4:1 impedance transformer and a 1:4 impedance transformer. This experiment shows that it is effective to connect a 1pF capacitor between the ground and the outer conductor input point of the main coaxial line in order to increase the operating frequency range.

Design of Doherty Amplifier With Push-Pull Structure Using BALUN Transform (발룬을 이용한 푸쉬풀 구조의 도허티 증폭기 설계)

  • 정형태;김성욱;장익수
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.41 no.4
    • /
    • pp.51-58
    • /
    • 2004
  • Push-pull structure with balun transformer is presented for load modulation technique which improves the overall efficiency of power amplifier Under the assumption that output impedance of fumed-off amplifier is high, conventional Doherty amplifier is composed of impedance inverter and peaking amplifier, of which operation is controlled by the input power level. In many case, however, impedance of 'off'amplifier is very low due to matching network or parasitic output capacitance. This paper introduces novel load modulation technique which uses low output impedance of 'off'amplifier. Experimental results show that good linearity and efficient!'enhancement of the proposed push-pull structure

A Study on the Fabrication Technologies for the 23 GHz 2-Stage LNA (23 GHz대 2단 저잡음 증폭기의 제작기술에 관한 연구)

  • 안동식;장동필
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.8 no.1
    • /
    • pp.52-60
    • /
    • 1997
  • A 23GHz 2-stage LNA was designed using MPIE numerical analysis and microwave CAD EEsof softwares. The basic circuit was designed by EEsof tools but analyzed more precisely using numerical MPIE tools and modified. The matching sections of the input and output terminals were designed with paralledl coupled filter-type lines, these matching sections perform impedance matching and DC blocking, more over have the advantages of small discontinuities and small errors in the design process. The FET chip is directly attached to the ground metal. The designed LNA gives 15.2dB gain and 2.7dB noise figure. without considering 1.8dB loss of connectors. These results validate our design process and matching schemes and fabrication technologies over the 20GHz frequency range.

  • PDF

Development of Circular Loop Array Antenna for LS Band Operation (LS Band용 원형 루프 배열 안테나의 제작 및 측정)

  • 전중창;김태수
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2002.11a
    • /
    • pp.290-292
    • /
    • 2002
  • In this paper, we present a simple design method and measurement results for circular loop antenna arrays, which can be used for LS band operation, such as access point antennas in the wireless LAN system. It has been shown that the input impedance of a circular loop can be adjusted near 100 $\Omega$ using a short stub. The length of the stub can be immediately determined in the work place through the measurement of S11 with a network analyzer. Fabricated arrays show high antenna gains as much as 12.4㏈i and 15.1 ㏈i at the center frequency of 2.45 ㎓ for 4${\times}$l and 4${\times}$2 array, respectively. These types of loop arrays can be fabricated at a low cost.

  • PDF

Design and Fabrication of Amplifier Using Photonic Bandgap and Coplanar Waveguide (Photonic Bandgap과 Coplanar Waveguide를 이용한 증폭기의 설계 및 제작)

  • 윤진호;서철헌
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.26 no.12B
    • /
    • pp.1754-1757
    • /
    • 2001
  • In this paper, a R-band hybrid amplifier with the coplanar waveguide(CPW) and the photonic bandgap(PBG) structure is designed and fabricated. The PBG and the CPW techniques are simultaneously employed in amplifier to improve the power added efficiency(PAE) and the IMD(Intermodulation Distortion) in R-band. In this paper, the PBG structures are optimized to obtain matching network. The output impedance of amplifier and the input impedance of PBG are matched to minimize the return loss. The PAE and the IMD were improved 15% and 4.5dB compared with the conventional amplifier, respectively.

  • PDF

Class-E Power Amplifier with Minimal Standby Power for Wireless Power Transfer System

  • Kim, Bong-Chul;Lee, Byoung-Hee
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.1
    • /
    • pp.250-255
    • /
    • 2018
  • This paper presents a method for minimizing standby power consumption in wireless power transfer (WPT) system via magnetic resonance coupling (MRC) that operates at 6.78 MHz. The proposed circuit controls the required capacitance according to operational condition in order to reduce standby power consumption. Based on an impedance characteristic of the class-E power amplifier, operational principles of the proposed circuit are analyzed. Moreover, to verify the effectiveness of the proposed class-E power amplifier, an 8 W prototype for WPT system is implemented. The measured input power of the proposed class-E power amplifier at standby condition is reduced from 5.81 W to 3.53 W.

Compact Rectangular Spiral Antenna Employing Modified Feeding Network (변형된 급전 구조를 가지는 소형 직사각형 스파이럴 안테나)

  • Lee Dong-Hyun;Kim Tae-Soo;Chun Joong-Chang
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2006.05a
    • /
    • pp.595-598
    • /
    • 2006
  • In this letter, a compact rectangular spiral antenna is proposed. Instead of a center excitation of conventional spiral antennas, the proposed antenna is adopted a modified feed network, feeding at the end of the spiral. The matching circuit of $'{\sqsupset}'$ shape is added at the feeding point. With this matching circuit, we can easily match the input impedance well, without the limit of the space. The parameter which determines the circular wave characteristic is explained, and the design guideline of the proposed antenna is presented. We design a proposed antenna operating at 9.5 GHz. Its size is only $0.6\lambda_g\times0.6\lambda_g$. The simulated bandwidth of the input impedance $(S11\leq-10)$ is 8.12% and that of $(AR\leq-3)$ is 4.62%, which is excellent characteristics as compared to its simple structure.

  • PDF

Design of a New RF Buit-In Self-Test Circuit for Measuring 5GHz Low Noise Amplifier Specifications (5GHz 저잡음 증폭기의 성능검사를 위한 새로운 고주파 Built-In Self-Test 회로 설계)

  • Ryu Jee-Youl;Noh Seok-Ho;Park Se-Hyun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.8 no.8
    • /
    • pp.1705-1712
    • /
    • 2004
  • This paper presents a new low-cost RF Built-In Self-Test (BIST) circuit for measuring transducer voltage gain, noise figure and input impedance of 5.25GHz low noise amplifier (LNA). The BIST circuit is designed using 0.18${\mu}{\textrm}{m}$ SiGe technology. The test technique utilizes input impedance matching and output transient voltage measurements. The technique is simple and inexpensive. Total chip size has additional area of about 18% for BIST circuit.

A UHF CMOS Variable Gain LNA with Wideband Input Impedance Matching and GSM Interoperability

  • Woo, Doo Hyung;Nam, Ilku;Lee, Ockgoo;Im, Donggu
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.17 no.4
    • /
    • pp.499-504
    • /
    • 2017
  • A UHF CMOS variable gain low-noise amplifier (LNA) is designed for mobile digital TV tuners. The proposed LNA adopts a feedback topology to cover a wide frequency range from 474 to 868 MHz, and it supports the notch filter function for the interoperability with the GSM terminal. In order to handle harmonic distortion by strong interferers, the gain of the proposed LNA is step-controlled while keeping almost the same input impedance. The proposed LNA is implemented in a $0.11{\mu}m$ CMOS process and consumes 6 mA at a 1.5 V supply voltage. In the measurement, it shows the power gain of greater than 16 dB, NF of less than 1.7 dB, and IIP3 of greater than -1.7 dBm for the UHF band.

Design of a New RF Built-In Self-Test Circuit for 5.25GHz SiGe Low Noise Amplifier (5.25GHz 저잡음 증폭기를 위한 새로운 고주파 BIST 회로 설계)

  • 류지열;노석호;박세현;박세훈;이정환
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2004.05b
    • /
    • pp.635-641
    • /
    • 2004
  • This paper presents a new low-cost RF Built-In Self-Test (BIST) circuit for measuring transducer voltage gain, noise figure and input impedance of 5.25GHa low noise amplifier (LNA). The BIST circuit is designed using 0.18${\mu}{\textrm}{m}$ SiGe technology. The test technique utilizes input impedance matching and output transient voltage measurements. The technique is simple and inexpensive. Total chip size has additional area of about 18% for BIST circuit.

  • PDF