• Title/Summary/Keyword: input estimation technique

Search Result 245, Processing Time 0.021 seconds

Effect of Rocking Behavior of Isolated Nuclear Structures and Sampling Technique for Isolation-System Properties on Clearance-to-stop (면진 원전구조물의 전도거동과 면진시스템 특성에 대한 샘플링 기법이 정지거리에 미치는 영향)

  • Han, Min Soo;Hong, Kee Jeung;Cho, Sung Gook
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.19 no.6
    • /
    • pp.293-302
    • /
    • 2015
  • ASCE 4 requires that a hard stop be built around the seismic isolation system in nuclear power plants. In order to maintain the function of the isolation system, this hard stop is required to have clearance-to-stop, which should be no less than the 90th-percentile displacements for 150% Design Basis Earthquake (DBE) shaking. Huang et al. calculated clearance-to-stop by using a Latin Hypercube Sampling technique, without considering the rocking behavior of the isolated structure. This paper investigates the effects on estimation of clearance-to-stop due to 1) rocking behavior of the isolated structure and 2) sampling technique for considering the uncertainties of isolation system. This paper explains the simplified analysis model to consider the rocking behavior of the isolated structure, and the input earthquakes recorded at Diablo Canyon in the western United States. In order to more accurately approximate the distribution tail of the horizontal displacement in the isolated structure, a modified Latin Hypercube Sampling technique is proposed, and then this technique was applied to consider the uncertainty of the isolation system. Through the use of this technique, it was found that rocking behavior has no significant effect on horizontal displacement (and thus clearance-to-stop) of the isolated structure, and the modified Latin Hypercube Sampling technique more accurately approximates the distribution tail of the horizontal displacement than the existing Latin Hypercube Sampling technique.

Adaptive Antenna Array for DOA Estimation Utilizing Orthogonal Weight Searching (직교가중치 탐색방법을 이용한 도착방향 추정 적응어레이 안테나)

  • 오정호;최승원;이현배;황영준
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.8 no.2
    • /
    • pp.116-125
    • /
    • 1997
  • This paper presents a novel method, entitled Orthogonal Weights Searching(OWS), for the Direction-Of-Arrival(DOA) estimation. Utilizing the modified Conjugate Gradient Method(MCGM), the weight vector which is orthogonal to the signal subspace is directly computed from the signal matrix. The proposed method does not require the computation of the eigenvalues and eigenvectors. In addition, the new technique excludes the procedure for the detection of the number of signals under the assumption that the number of weights in the array is greater than the number of input signals. Since the proposed technique can be performed independently of the detection procedure, it shows a good performance in adverse signal environments in which the detection of the number of array inputs cannot be obtained successfully. The performance of the proposed technique is compared with that of the convectional eigen-decomposition method in terms of angle resolution for a given signal-to-noise ratio(SNR) and a required amount of computations.

  • PDF

Compressive Sensing for MIMO Radar Systems with Uniform Linear Arrays (균일한 선형 배열의 다중 입출력 레이더 시스템을 위한 압축 센싱)

  • Lim, Jong-Tae;Yoo, Do-Sik
    • Journal of Advanced Navigation Technology
    • /
    • v.14 no.1
    • /
    • pp.80-86
    • /
    • 2010
  • Compressive Sensing (CS) has been widely studied as a promising technique in many applications. The CS theory tells that a signal that is known to be sparse in a specific basis can be reconstructed using convex optimization from far fewer samples than traditional methods use. In this paper, we apply CS technique to Multiple-input multiple-output (MIMO) radar systems which employ uniform linear arrays (ULA). Especially, we investigate the problem of finding the direction-of-arrival (DOA) using CS technique and compare the performance with the conventional adaptive MIMO techniques. The results suggest the CS method can provide the similar performance with far fewer snapshots than the conventional adaptive techniques.

Maneuverability Analysis of a Ship by System Identification Technique (시스템 검증법에 의한 조종성능(操縱性能) 해석(解析))

  • Chang-Gu,Kang;Sang-Hyun,Suh;Jae-Shin,Kim
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.21 no.4
    • /
    • pp.10-20
    • /
    • 1984
  • When the hydrodynamic coefficients of the ship maneuvering equation are estimated by captive model test, it is difficult to take account of the scale effect between model and full scale ship. This scale effect problem can be overcome by processing the sea trial data with system identification. Extended Kalman filter is used as a system identification technique for the modification of the simulation equation as well as the estimation of hydrodynamic coefficients The phenomena of simultaneous drifting of linear coefficients occur. It is confirmed that two coefficients in each pair-$(Y_v',\;Y_r'-m'u'),\;(N_v',\;N_r')$-are simultaneously drifting and all 4 coefficients are drifting together. Particularly simultaneous drifting and 2 coefficients in each pair is more significant. It is also shown that the simultaneous drifting of 4 coefficients can be reduced by choosing the input data which have the random v'/r' curve and 4 coefficients are estimated within $2{\sim}4%$ error, which may be noise level. So, it is recommended to operate the rudder randomly in sea trial or model test for the application of system identification technique.

  • PDF

A Simple Resonant Link Inverter for a Discrete-Time Current Control (이산 전류 제어를 위한 공진형 인버터)

  • 오인환;정영석;주형길;윤명중
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.3 no.1
    • /
    • pp.36-45
    • /
    • 1998
  • A simple source voltage clamped resonant link (SVCRL) inverter is proposed to clamp the DC link voltage to the input source voltage and reduce the current rating of resonant inductor. The current control of a permanent magnet synchronous motor (PMSM) using a predictive current control technique (PCCT) employing the SVCRL inverter is also investigated to overcome the disadvantage of the current regulated delta modulation (CRDM) control technique. By using the PCCT based on the discrete model of a PMSM and estimation of back EMF, the minimized current ripple with small number of switchings can be obtained. Finally, the comparative computer simulation and experimental results are given to show the usefulness of the proposed technique.

Adaptive Feedback Linearization Technique of PM Synchronous Motor With Specified Output Dynamic Performance (규정된 동특성을 갖는 영구 자석형 동기 전동기의 적응 궤환 선형화 제어 기법)

  • Kim, Kyeong-Hwa;Baik, In-Cheol;Joo, Hyeong-Gil;Youn, Myung-Joong
    • Proceedings of the KIEE Conference
    • /
    • 1995.07a
    • /
    • pp.334-336
    • /
    • 1995
  • An adaptive feedback linearization technique of a PM synchronous motor with specified output dynamic performance is proposed. The adaptive parameter estimation is achieved by a model reference adaptive technique where the stator resistance and flux linkage can be estimated with the current dynamic model and the state observer. Using these estimated parameters, the linearizing control inputs are calculated and a nonlinear coupled model of a PM synchronous motor is input-output linearized. The resultant model has the load torque disturbance. To get ti perfect decoupled model, the load torque is estimated. The adaptation laws are derived by the hyperstability theory and positivity concept. The robustness of the proposed control scheme will be proven through the computer simulations.

  • PDF

Damage Detection of Building Structures Using Ambient Vibration Measuresent (자연진동을 이용한 건물의 건전도 평가)

  • Kim, Sang Yun;Kwon, Dae Hong;Yoo, Suk Hyeong;Noh, Sam Young;Shin, Sung Woo
    • KIEAE Journal
    • /
    • v.7 no.4
    • /
    • pp.147-152
    • /
    • 2007
  • Numerous non-destructive tests(NDT) to assess the safety of real structures have been developed. System identification(SI) techniques using dynamic responses and behaviors of structural systems become an outstanding issue of researchers. However the conventional SI techniques are identified to be non-practical to the complex and tall buildings, due to limitation of the availability of an accurate data that is magnitude or location of external loads. In most SI approaches, the information on input loading and output responses must be known. In many cases, measuring the input information may take most of the resources, and it is very difficult to accurately measure the input information during actual vibrations of practical importance, e.g., earthquakes, winds, micro seismic tremors, and mechanical vibration. However, the desirability and application potential of SI to real structures could be highly improved if an algorithm is available that can estimate structural parameters based on the response data alone without the input information. Thus a technique to estimate structural properties of building without input measurement data and using limited response is essential in structural health monitoring. In this study, shaking table tests on three-story plane frame steel structures were performed. Out-put only model analysis on the measured data was performed, and the dynamic properties were inverse analyzed using least square method in time domain. In results damage detection was performed in each member level, which was performed at story level in conventional SI techniques of frequency domain.

Experimental Data based-Parameter Estimation and Control for Container Crane (실험적 데이터 기반의 컨테이너 크레인 파라미터 추정 및 제어)

  • Lee, Yun-Hyung;Jin, Gang-Gyoo;So, Myung-Ok
    • Journal of Navigation and Port Research
    • /
    • v.32 no.5
    • /
    • pp.379-385
    • /
    • 2008
  • In this paper, we presents a scheme for the parameter estimation and optimal control scheme for apparatus of container crane system. For parameter estimation, first, we construct the open loop of the container crane system and estimate its parameters based on input-output data, a real-coded genetic algorithm(RCGA) and the model adjustment technique. The RCGA plays an important role in parameter estimation as an adaptive mechanism. For controller design, state feedback gain matrix is searched by another RCGA and the estimated model. The performance of the proposed methods are demonstrated through a set of simulation and experiments of the experimental apparatus.

Parameter Estimation and Control for Apparatus of Container Crane;An Experimental Approach (모형 컨테이너 크레인의 파라미터 추정 및 제어;실험적 접근)

  • Lee, Yun-Hyung;Jin, Gang-Gyoo;So, Myung-Ok
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2007.12a
    • /
    • pp.304-306
    • /
    • 2007
  • In this paper, we presents a scheme for the parameter estimation and optimal control scheme for apparatus of container crane system. For parameter estimation, first, we construct the open loop of the container crane system and estimate its parameters based on input-output data, a real-coded genetic algorithm(RCGA) and the model adjustment technique. The RCGA plays an important role in parameter estimation as an adaptive mechanism. For controller design, state feedback gain matrix is searched by another RCGA and the estimated model. The performance of the proposed methods are demonstrated through a set of simulation and experiments of the experimental apparatus.

  • PDF

Estimation of Populations of Moth Using Object Segmentation and an SVM Classifier (객체 분할과 SVM 분류기를 이용한 해충 개체 수 추정)

  • Hong, Young-Ki;Kim, Tae-Woo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.11
    • /
    • pp.705-710
    • /
    • 2017
  • This paper proposes an estimation method of populations of Grapholita molestas using object segmentation and an SVM classifier in the moth images. Object segmentation and moth classification were performed on images of Grapholita molestas moth acquired on a pheromone trap equipped in an orchard. Object segmentation consisted of pre-processing, thresholding, morphological filtering, and object labeling process. The classification of Grapholita molestas in the moth images consisted of the training and classification of an SVM classifier and estimation of the moth populations. The object segmentation simplifies the moth classification process by segmenting the individual objects before passing an input image to the SVM classifier. The image blocks were extracted around the center point and principle axis of the segmented objects, and fed into the SVM classifier. In the experiments, the proposed method performed an estimation of the moth populations for 10 moth images and achieved an average estimation precision rate of 97%. Therefore, it showed an effective monitoring method of populations of Grapholita molestas in the orchard. In addition, the mean processing time of the proposed method and sliding window technique were 2.4 seconds and 5.7 seconds, respectively. Therefore, the proposed method has a 2.4 times faster processing time than the latter technique.