Saalets] = A144 Al1s 2010 2

7O 43 de] 4F QY Yol x9S
o A

Compressive Sensing for MIMO Radar Systems with Uniform
Linear Arrays
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Abstract

Compressive Sensing (CS) has been widely studied as a promising technique in many applications. The CS
theory tells that a signal that is known to be sparse in a specific basis can be reconstructed using convex
optimization from far fewer samples than traditional methods use. In this paper, we apply CS technique to
Multiple-input multiple-output (MIMO) radar systems which employ uniform linear arrays (ULA). Especially,
we investigate the problem of finding the direction-of-arrival (DOA) using CS technique and compare the
performance with the conventional adaptive MIMO techniques. The results suggest the CS method can provide
the similar performance with far fewer snapshots than the conventional adaptive techniques.
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L. Introduction and wireless communication systems [4]. CS theory

asserts that a signal which is known to be sparse in a

A newly emerging technology, compressive sensing specific basis can be exactly reconstructed from far
(CS) has been applied in many applications such as fewer samples than traditional methods use [1], [5], [6].
imaging systems [1], [2], medical imaging systems [3] To obtain the samples, CS uses nonadaptive linear
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projections and the signal can be reconstructed by
convex optimization procedure from these projection
values.

The application of compressive sensing technique to
a sensor array is proposed in [7] They investigated the
problem of estimating direction-of-arrival (DOA) by
discretizing the angle space. This idea is extended to the
problem of DOA estimation for Multple-input
multiple-output (MIMO) radar systems in [8]. For a
small number of targets, they formulated the DOA
estimation as the reconstruction of a sparse signal using
compressive sensing. Especially, a distributed MIMO
radar scenario is considered in [8].

A MIMO radar system can transmit multiple
independent waveforms via its multiple antennas unlike
a standard phased-array radar transmitting scaled
versions of a single waveform [9], [10], [11]. According
to the transmit/receive antenna arraignment, MIMO radar
systems are categorized into two types: MIMO radar
with widely separated transmit/receive antennas and with
colocated antennas. The MIMO radar systems with
widely separated tranmit/receive antennas can provide
the spatial diversity of the target's radar cross section
(RCS) [11]. The MIMO radar systems with colocated
antennas can offer higher resolution, higher sensitivity to
detecting slowly moving targets, and better parameter
identifiability than traditional radar systems [10].

In this paper, we apply CS technology to MIMO
radar systems with colocated antennas. In particular, we
consider a uniform linear array (ULA) MIMO radar,
where the elements of antenas are uniformly spaced in
a line as shown in fig. 1. By discretizing the angle space
as in [7], [8], we formulated the DOA estimation for
MIMO radar system with ULA. For a small number of
targets, the DOAs are sparse in the angle sparse and
using this sparsity we can obtain DOA estimation using
convex optimzation procedure. The performance of CS
method is compared to the conventional adaptive MIMO
techiques: Capon [12], [13] and Amplitude and phase
estimation (APES) [14]. The simulation results suggest

the CS method can provide the similar performance with
far fewer snapshots the conventional adaptive

techniques.

a2 1. st MY v obgLt
Fig. 1. The uniform linear array

II. Signal Model

In this section, we briefly introduce the CS theory
and formulate the DOA estimation for MIMO radar
systems with ULAs.

2—1 Compressive Sensing

Consider a discrete-time signal x, which is
represented by an N X1 column vector. The signal x is

represented in terms of a basis of N X1 vectors ,

VisWas>¥n and thus is expressed as

N
x=) sy, UY¥Ys
; (1
where s is the N X1 column vector of weighting
coefficients S; =<X.¥; > and Wis the NXN basis

matrix, T =¥ Wyl If only K of the i

coefficients are nonzero, the signal x is said to be
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K-sparse. CS takes non-traditional linear measurement as

y=0x=0¥s[] Os )

where @ is M XN measurement matrix (M << N).

From the M projection values JYi>Y2>""">Vu | ie., the
M measurements, the K-sparse signal x can be
reconstructed with high probability by solving a convex

optimization problem described by (3)
s =arg min||s'||1 subject to ©s' =y 3)

If the measurements are corrupted by an additive

) ) . ) 2
Gaussian noise n with zero mean and variance € and

are represented as
Y= ®s+n 4)

then s can be recovered by applying the Dantzig

selector to the convex optimization problem as in [15]

s =arg rnin||s’||1 s.t. H@H (y —@s’)”w <u 5)

where  #=(1+1")2logNo o 4 positive

scalar t.
2—2 Signal model for MIMO radar with ULA

We consider a MIMO radar system with ULAs of Mt
transmit antennas and Mr receive antennas. The array
transfer vector or steering vector for half-wavelength

spacing ULA is given by [12]
3(0) :[1 e*j;rsin& efj27rsim9 “_e—j(m—l);zsina]r (6)

where m is the number of ULA elements, 0 denotes

the direction of arrival, and [ ]T indicates the transpose

sh=rakel sty =32 A4 A1% 20104 2€

operation. Let xi(n) denote the discrete-time baseband
signal transmitted by the ith transmit antenna. Assume
that the transmitted signals are narrowband and that the
propagation is non-dispersive. Then the baseband signal
at the kth target is described by

7 =350 @)X a @)

where Ok is the DOA for the kth target, and
x(n) =[x,(n) x,(n) Xy, (”)]T Under the

simplifying assumption of point targets, the received

signal at the lth receiving antenna elements is

z,(n) = Zﬂkbl(ek X' (m)a(f,) + ¢, (n) ®)

where K is the number of targets, [k's are the
reflection coefficient proportional to the RCSs of the

targets, bl(6k) is the Ith element of the steering vector
b(0) =[b,(6) b,(0) - b, (O] for the receive

ULA, and e¢l(n) denotes independent and identically
distributed (i.i.d.) Gausian noise with mean zero and
variance 02. If L snapshots are taken at the receiving
antenna and zl(n), n =1,2,.., L-1 are formed into a

vector, then we have
z, =[z,(0) z(1) -+ z,(L-D]
> B.b,6,)x" (0)a(6,)
£,(0)
> B.b(6)x" (Da(b,) .| am

gz(L_l)

2. B (6)x" (L-a(é,)

= iﬂkbz (6,)Xa(6,) +¢, ©

where X:[X(O) x(1) "'X(L_l)]T and the
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T
noise vector is & =[&1(0) &) -+ & (L-D]
Now, by discretizing the angle space as

az[al 2 ---aN] and defining a vector s as

SZ[S] Sy o SN]T

where

g = ﬂka lf a, :Hk
" 10, otherwise , (10)

the equation (9) can be expressed as

z = 2h@)Xa@)s, e

The index n of the nonzero element of s indicates that
there is a target at the angle an. If we consider a small
number of targets, i.e., K is small, only K elements in
s are nonzero. Constructing a basis matrix Wl for the 1-th
antenna as

¥, =[b(a)Xa(ar,) - b(ay)Xa(ay)] (12)
(11) becomes
zZ, = lPZS+8,. (13)

Thus, if we omit the noise term, zI becomes a
K-sparse signal. Now, we take M linear projections of
the received signal at the I-th antenna as

r=0,z,=0,¥s00O;s (14)
where @l is a measurement matrix and an M xN

random Gaussian matrix. Collecting the projections of
Mr receive antennas, we get

r=| : |sl Os.
0, 15)

Therefore, based on the CS theory, the vector s can
be recovered by applying the Dantzig selector. The
estimated DOA is the solution of the following convex
optimization

§=argmin|s'| sz H@H (y —®s')”w <u (16)

where M =(+1")2logNo  for a positive
scalar t.

. Simulation Results

In our simulation, we consider MIMO radar systems
with uniform linear arrays. For transmitting and
receiving the signals the same uniform linear arrays are
used. The elements of the uniform linear arrays are
arranged with half-wavelength spacing. The orthogonal
quadrature phase shift keyed (QPSK) sequences are used
as the transmitted waveforms. The received signals are
corrupted by zero mean Gaussian noise.

Two scenarios are considered for the target locations
and the number of elements in the uniform linear arrays.
In the first scenario, K = 3 targets are located at -5°,
-10°, -25° with reflection coefficients 31 = 1, 32 = 1,
33 = 1, and the number of the uniform linear array is
Mt = Mr = 20. The SNR, which is defined as the ratio
of the total transmitting power across the transmitting
antennas over the additive noise power, is 20 dB. In the
second scenario, the fewer elements are used. Mt = Mr
= 10 elements are used and 3 targets are located at -5°,
-25°, -40°. The SNR value for this scenario is 10 dB.
For both scenarios, we search the direction-of-arrival
with 0.5° increments from -90° to 90°. Thus, the angle
space is [-90°, -89.5° .., 89.5°, 90°]. The maximum
number of snapshots in the receiving elements is 256.
We compare the performance of the compressive sensing
method with those of the adaptive array algorithm:
Capon and APES. The positive scalar for the threshold
in Dantzig selector, t, is set to 1 for both scenarios, and
thus the thresholds are 0.45 and 1.43 respectively.

Fig. 2 shows the moduli of the estimates of the



84

reflection coefficients of the compressive sensing
method, Capon and APES for the first scenario. The
figures (a) and (b) are corresponding the estimates
obtained by Capon and APES using 256 snapshots,
respectively. The figure (c) is the result of the

compressive sensing method using only 16 snapshots.
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Fig. 2. DOA estimates for the first scenario
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We can clearly see that the 3 targets are present even
using only 16 snapshots. The performance for the
second scenario is shown in Fig. 3. The compressive
sensing using only 16 snapshots show the similar
performance to Capon and APES algorithms using 256

snapshots.
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IV. Conclusions

In this paper, we investigated the application of
compressive sensing for MIMO radar systems with
uniform linear arrays. For the small number of targets,
we can estimate the DOA of targets using much fewer
samples than the conventional adaptive algorithms such
as Capon and APES. And the performance of estimating
the DOA of targets using compressive sensing method is
similar to those of the conventional algorithms.
Therefore, the compressive sensing method can provide
much benefit in the application where many receive
nodes need to transmit the samples to the central
collecting center. The effect on quantized measures in
compressive sensing is one of the topics to be
investigated.
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