Abstract
This paper proposes an estimation method of populations of Grapholita molestas using object segmentation and an SVM classifier in the moth images. Object segmentation and moth classification were performed on images of Grapholita molestas moth acquired on a pheromone trap equipped in an orchard. Object segmentation consisted of pre-processing, thresholding, morphological filtering, and object labeling process. The classification of Grapholita molestas in the moth images consisted of the training and classification of an SVM classifier and estimation of the moth populations. The object segmentation simplifies the moth classification process by segmenting the individual objects before passing an input image to the SVM classifier. The image blocks were extracted around the center point and principle axis of the segmented objects, and fed into the SVM classifier. In the experiments, the proposed method performed an estimation of the moth populations for 10 moth images and achieved an average estimation precision rate of 97%. Therefore, it showed an effective monitoring method of populations of Grapholita molestas in the orchard. In addition, the mean processing time of the proposed method and sliding window technique were 2.4 seconds and 5.7 seconds, respectively. Therefore, the proposed method has a 2.4 times faster processing time than the latter technique.
본 논문에서는 해충 영상에서 객체 분할과 SVM 분류기를 이용한 복숭아순나방의 개체 수 추정 방법을 제안한다. 과수원에 설치된 페로몬 트랩에 수집된 복숭아순나방 영상에 대해 객체 분할과 개체 분류를 수행하였다. 객체 분할은 전처리, 문턱치 처리, 형태학적 필터링, 객체 레이블링 과정으로 구성된다. 해충 영상에서 복숭아순나방의 개체 분류는 SVM 분류기의 학습과 개체 분류, 개체 수 추정 단계로 구성된다. 객체 분할은 SVM 분류기에 입력하기 전에 객체들을 분할함으로써 개체 분류 단계에서 처리 과정을 단순하게 해 준다. 분할된 객체들에 대해 중심점과 주축을 중심으로 영상 블록을 추출하여 SVM 분류기에 입력한다. 실험에서 10개의 해충 영상에 대해 복숭아순나방의 개체 수 추정 결과 97%의 평균 추정 정확도를 보임으로써 과수원에서 복숭아순나방의 개체 모니터링 방법으로서 효과적임을 보였다. 또한 제안한 방법의 처리 시간은 평균 2.4초, 슬라이딩 윈도우 방식은 5.7초로 본 논문의 방법이 약 2.4배 정도 처리 시간이 빠름을 보였다.