• Title/Summary/Keyword: input/output devices

Search Result 380, Processing Time 0.025 seconds

Input-Output Analysis on the Medical Service Industry between Korea and Japan (의료서비스산업의 산업연관분석)

  • 이견직;정영호
    • Health Policy and Management
    • /
    • v.10 no.1
    • /
    • pp.126-147
    • /
    • 2000
  • This paper empirically explores the nature of the medical service industry and its various propagation effects on the economy in the input-output model, as revealed by a comparative analysis between Korea and Japan. The main findings of the paper are as follows; First, the growth of medical industry induces above-average effect on employment. Second, the industry is of the characteristics of weak both backward and forward linkage effects implying a 'final demand dependency industry'. When compared with public service sectors, however, the medical services industry shows stronger backward linkage effect than those sectors. Furthermore, it has strong repercussion effects on the goods industries. Third, in order to produce per unit of services, the medical services industry of Korea uses relatively more drugs and medical devices than that of Japan. In general, it has been shown that production structure of medical service industry in Korea is 'hardware-oriented' one; on the other hand, 'software-oriented' in Japan which means that, as intermediate inputs, outsourcing and informatization has been used than those of Korea. From the findings of the paper it could be emphasized that the medical organizations in Korea should put more efforts on shifting the current hardware-oriented production structure to strengthen core competence by enhancing productivity and by outsourcing to improve efficiency of production process. However, the medical organizations in Korea would not have enough incentives for high value-added production structure because they enjoy high operating surplus. Therefore, it would be necessary that government policy should be taken into account of these environments.

  • PDF

Development of Superconductive Arithmetic and Logic Devices (초전도 논리연산자의 개발)

  • Kang J. H
    • Progress in Superconductivity
    • /
    • v.6 no.1
    • /
    • pp.7-12
    • /
    • 2004
  • Due to the very fast switching speed of Josephson junctions, superconductive digital circuit has been a very good candidate fur future electronic devices. High-speed and Low-power microprocessor can be developed with Josephson junctions. As a part of an effort to develop superconductive microprocessor, we have designed an RSFQ 4-bit ALU (Arithmetic Logic Unit) in a pipelined structure. To make the circuit work faster, we used a forward clocking scheme. This required a careful design of timing between clock and data pulses in ALU. The RSFQ 1-bit block of ALU used in this work consisted of three DC current driven SFQ switches and a half-adder. We successfully tested the half adder cell at clock frequency up to 20 GHz. The switches were commutating output ports of the half adder to produce AND, OR, XOR, or ADD functions. For a high-speed test, we attached switches at the input ports to control the high-speed input data by low-frequency pattern generators. The output in this measurement was an eye-diagram. Using this setup, 1-bit block of ALU was successfully tested up to 40 GHz. An RSFQ 4-bit ALU was fabricated and tested. The circuit worked at 5 GHz. The circuit size of the 4-bit ALU was 3 mm ${\times}$ 1.5 mm, fitting in a 5 mm ${\times}$ 5 mm chip.

  • PDF

A 13.56 MHz CMOS Multi-Stage Rectifier for Wireless Power Transfer in Biomedical Applications (바이오응용 무선전력전달을 위한 13.56 MHz CMOS 다단 정류기)

  • Cha, Hyouk-Kyu
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.3
    • /
    • pp.35-41
    • /
    • 2013
  • An efficient multi-stage rectifier for wireless power transfer in deep implant medical devices is implemented using $0.18-{\mu}m$ CMOS technology. The presented three-stage rectifier employs a cross-coupled topology to boost a small input AC signal from the external device to produce a 1.2-1.5 V output DC signal for the implant device. The designed rectifier achieves a maximum measured power conversion efficiency of 70% at 13.56 MHz under the conditions of a low 0.6-Vpp RF input signal with a $10-k{\Omega}$ output load resistance.

Mechanically Modulated Nonlinear Digital Microactuators for Purified Digital Stroke and Nano-Precision Actuation (기계적 비선형 변조기를 이용한 디지털 구동의 안정화와 나노 구동정도 구현을 위한 디지털 마이크로액추에이터)

  • 이원철;진영현;조영호
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.12
    • /
    • pp.1990-1996
    • /
    • 2004
  • This paper presents a nonlinearly modulated digital actuator (NMDA) for producing nano-precision digital stroke. The NMDA, composed of a digital microactuator and a nonlinear micromechanical modulator, purifies the stroke of the digital actuator in order to generate the high-precision displacement output required for nano-positioning devices. The function and concept of the nonlinear micromechanical modulator are equivalent to those of the nonlinear electrical limiters. The linear and nonlinear modulators, having an identical input and output strokes of 15.2${\mu}{\textrm}{m}$ and 5.4${\mu}{\textrm}{m}$, are designed, fabricated and tested, respectively. The linear and nonlinear modulators are linked to identical digital actuators in order to compare the characteristics of the linearly modulated microactuator (LMDA) and NMDA. In addition, an identical linear modulator is attached to the output ports of LMDA and NMDA. The NMDA shows the repeatability of 12.3$\pm$2.9nm, superior to that of 27.8$\pm$2.9nm achieved by LMDA. When the identical linear modulator is connected to LMDA and NMDA, the final modulated output from NMDA shows the repeatability of 10.3$\pm$7.2nm, superior to that of 15.7$\pm$7.7nm from LMDA. We experimentally verify the displacement purifying capability of the nonlinear mechanical modulator, applicable to nano-precision positioning devices and systems.

An Education Method of Java SW Designs for IoT Wireless Device Control using Microbits (마이크로비트를 이용한 IoT 무선 디바이스 제어용 Java SW설계 교육 방법)

  • Hur, Kyeong
    • Journal of Practical Engineering Education
    • /
    • v.12 no.1
    • /
    • pp.85-91
    • /
    • 2020
  • SW which controls IoT devices using wireless communication technology must operate without errors. In order for IoT devices to be widely used, the technical skills of engineers who design such software must be improved. Compared to designing the input / output SW of a single device, the SW Flowchart design and Java SW programming process that clearly define various input / output relations between the transmitter and the receiver are complicated. In this paper, we proposed a SW Flowchart design method for controlling IoT devices based on wireless communication. In this process, it is explained that the entire control algorithm is implemented through a problem division process. In addition, we proposed an educational method for programming the designed SW Flowchart into Java SW using Microbits, which are educational IoT devices. In the course to which this education method was applied, the results of satisfaction evaluation of students were analyzed, and the effectiveness of the IoT device control SW education method using Microbits was analyzed.

Designing Coherent User Interfaces of N-Screen Services Reflecting Users' Task Knowledge

  • Park, Hwan-Su;Lee, Dong-Seok
    • Journal of the Ergonomics Society of Korea
    • /
    • v.31 no.1
    • /
    • pp.41-48
    • /
    • 2012
  • Objective: Companies want to expand their business by providing their services at other devices and new services based upon existing services. Therefore, they look for building brand identity by providing same experience throughout devices and services. Background: Many services are available to use at multiple devices including mobile phones, tablet, personal computers, and televisions, thanks to proliferation of n-screen and cloud technology. Method: It was discussed that consistency, which emphasizes the regularity and has been one of essential aspects of user interface design, seems not effective to be applied to n-screen services, owing to different screen size, input and output peripherals, usage environment and users' attitude. Results: A new definition of same experience among different devices and services, called coherence, was introduced and abstraction levels of user interfaces were proposed as the denominator of defining coherence. Then types of users' task knowledge at each abstraction level were discussed with examples. Conclusion: This paper concluded by discussing design requirements for designing coherent user interfaces among devices and services.

Analysis of Polarization Properties of Optical Isolator for Fiber Laser

  • Kim, Tae-Gon;Cheon, Min-Woo;Park, Yong-Pil;Cho, Kyung-Jae;Kang, Sung-Hak
    • Transactions on Electrical and Electronic Materials
    • /
    • v.12 no.6
    • /
    • pp.241-244
    • /
    • 2011
  • An isolator transmits light in the forward direction and blocks light from passing in the reverse direction. It is regarded an essential optical component in medical, industrial, and research lasers for blocking reflection beams that cause optical damage and noise. It is also used as a communicative light intensifier to expand the lifespan of devices and enhance transmission quality. This study analyzed the characteristics of the core components in the construction of a polarization-independent isolator, namely, the walk-off polarizer and the Faraday rotator. Measurement of the extinction ratio of the resultant walk-off polarizer revealed that the ratio between the vertical and horizontal rays was 1,050:1 with a laser output of 0.032 W and 1,010:1 with a laser output of 2.68 W, thus presenting ratios similar to 1,000:1. In addition, the walk-off polarizer and Faraday rotator constructed in this study were used to compare output changes according to changes in power of input light and to check the penetration ratio. Results from the study presented variations in output value according to changes in power of input light. However, the average penetration ratio remained relatively consistent (~81.4%).

Minimization of Voltage Stress across Switching Devices in the Z-Source Inverter by Capacitor Voltage Control

  • Tran, Quang-Vinh;Chun, Tae-Won;Kim, Heung-Gun;Nho, Eui-Cheol
    • Journal of Power Electronics
    • /
    • v.9 no.3
    • /
    • pp.335-342
    • /
    • 2009
  • The Z-source inverter (ZSI) provides unique features such as the ability to boost dc voltage with a single stage simple structure. Although the dc capacitor voltage can be boosted by a shoot-through state, the voltage stress across the switching devices is rapidly increased, so high switching device power is required at the ZSI. In this paper, algorithms for minimizing the voltage stress are suggested. The possible operating region for obtaining a desired ac output voltage according to both the shoot-through time and active state time is investigated. The reference capacitor voltages are derived for minimizing the voltage stress at any desired ac output voltage by considering the dc input voltage. The proposed methods are carried out through the simulation studies and experiments with 32-bit DSP.

Transient Performance of a Hybrid Electric Vehicle with Multiple Input DC-DC Converter

  • Nashed, Maged N.F.
    • Journal of Power Electronics
    • /
    • v.3 no.4
    • /
    • pp.230-238
    • /
    • 2003
  • Electric vehicles (EV) demands for greater acceleration, performance and vehicle range in pure electric vehicles plus mandated requirements to further reduce emissions in hybrid electric vehicles (HEV) increase the appeal for combined on-board energy storage systems and generators. And the power electronics plays an important role in providing an interface between fuel cells (FC) and loads. This paper deals with a multiple input DC-DC power converter devoted to combine the power flowing of multi-source on energy systems. The multi-source is composed of (i) FC system as a prime power demands, (ii) super capacitor banks as energy storage devices for high and intense power demands, (iii) superconducting magnetic energy storage system (SMES), (iv) multiple input DC-DC power converter and (v) a three phase inverter-fed permanent magnet synchronous motor as a drive. In this system, It is used super capacitor banks and superconducting magnetic energy replaces from the battery system. The modeling and transient performance simulation is effective for reducing transient influence caused by sudden charge of effective load. The main purpose of power electronic converters is to convert the DC power output from the fuel cell and other to a suitable AC voltage, which can be connected to electric loads directly (PMSM). The fuel cell and other output is connected to the DC-DC converter, which regulates the DC link voltage.

Automatic frequency Control Current-Source Inverter for Forging Application

  • Chudjuarjeen, Saichol;Koompai, Chayant;Monyakul, Veerapol
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.238-242
    • /
    • 2004
  • The paper describes an automatic frequency control current-fed inverter for forging applications. The IGBT in series with diodes as its switching devices in the inverter circuit which is of full-bridge type. The operating frequency is automatically tracked to maintain a small constant leading phase angle when load parameters change. The load voltage is controlled to protect the switches. The output power can be adjusted by varying the input current from phase controlled rectifiers which is a part of current source. The system has been operated at 15-17 kHz. The output power transferred to the load is 1,595 watts. It can heat the steel work pieces with 15 mm diameter and 120 mm long from room temperature to approximately 1100 $^{\circ}C$ within 20 seconds with 0.97 leading power factor on the input side.

  • PDF