DOI QR코드

DOI QR Code

Analysis of Polarization Properties of Optical Isolator for Fiber Laser

  • Kim, Tae-Gon (Department of Electrical and Electronic Engineering, Dongshin University Graduate School) ;
  • Cheon, Min-Woo (Department of Biomedical Engineering, Dongshin University) ;
  • Park, Yong-Pil (Department of Biomedical Engineering, Dongshin University) ;
  • Cho, Kyung-Jae (Fiber & Networking Co., LTD.) ;
  • Kang, Sung-Hak (Fiber & Networking Co., LTD.)
  • Received : 2011.08.23
  • Accepted : 2011.09.28
  • Published : 2011.12.25

Abstract

An isolator transmits light in the forward direction and blocks light from passing in the reverse direction. It is regarded an essential optical component in medical, industrial, and research lasers for blocking reflection beams that cause optical damage and noise. It is also used as a communicative light intensifier to expand the lifespan of devices and enhance transmission quality. This study analyzed the characteristics of the core components in the construction of a polarization-independent isolator, namely, the walk-off polarizer and the Faraday rotator. Measurement of the extinction ratio of the resultant walk-off polarizer revealed that the ratio between the vertical and horizontal rays was 1,050:1 with a laser output of 0.032 W and 1,010:1 with a laser output of 2.68 W, thus presenting ratios similar to 1,000:1. In addition, the walk-off polarizer and Faraday rotator constructed in this study were used to compare output changes according to changes in power of input light and to check the penetration ratio. Results from the study presented variations in output value according to changes in power of input light. However, the average penetration ratio remained relatively consistent (~81.4%).

Keywords

References

  1. J. W. Roh, J. S. Yang, W. Y. Lee, S. H. Ok, D. H. Woo, Y. T. Byun, T. M. Jhon, and S. Lee, J. Korean Inst. Mater. 43, 703 (2005).
  2. J. S. Tang, J. Korean Magn. Soc. 15, 148 (2005). https://doi.org/10.4283/JKMS.2005.15.2.148
  3. R. M. Jopson, G. Eisenstein, H. E. Earl, and K. L. Hall, Electron. Lett. 21, 783 (1985) [http://dx.doi.org/10.1049/el:19850552].
  4. J. S. Jeon, J. Opt. Soc. (Korea) 8, 37 (1997).
  5. M. Shirasaki and K. Asama, Appl. Opt. 21, 4296 (1982) [http://dx.doi.org/10.1364/AO.21.004296].
  6. K. W. Chang and W. V. Sorin, Opt. Lett. 15, 449 (1990) [http://dx.doi.org/10.1364/OL.15.000449].
  7. A. Popkov, M. Fehndrich, M. Lohmeyer, and H. Dotsch, Appl. Phys. Lett. 72, 2508 (1998) [http://dx.doi.org/10.1063/1.121402].
  8. N. Bahlmann, V. Chandrasekhara, A. Erdmann, R. Gerhardt, P. Hertel, R. Lehmann, D. Salz, F. J. Schroteler, M. Wallenhorst, and H. Dotsch, J. Lightwave Technol. 16, 818 (1998) [http://dx.doi.org/10.1109/50.669010].
  9. H. Yokoi and T. Mizumoto, Electron. Lett. 33, 1787 (1997) [http://dx.doi.org/10.1049/el:19971253].
  10. T. Mizumoto, H. Chihara, N. Tokui, and Y. Naito, Electron. Lett 26, 199 (1990) [http://dx.doi.org/10.1049/el:19900134].
  11. H. Sato, M. Kawase, and M. Saito, Appl. Opt. 24, 2300 (1985) [http://dx.doi.org/10.1364/AO.24.002300].

Cited by

  1. Distributed polarization analysis with binary polarization rotators for the accurate measurement of distance-resolved birefringence along a single-mode fiber vol.26, pp.20, 2018, https://doi.org/10.1364/OE.26.025989