References
- M. Sluijter, A. Herzog, D. K. G. De Boer, M. P. C. M. Krijn, and P. H. Urbach, J. Opt. Soc. Am. B: Opt. Phys. 26, 2035 (2009) [http://dx.doi.org/10.1364/josab.26.002035].
- M. Ye, B. Wang, M. Kawamura, and S. Sato, Jpn. J. Appl. Phys. 46, 6776 (2007) [http://dx.doi.org/10.1143/jjap.46.6776].
- M. Ye, B. Wang, T. Takahashi, and S. Sato, Opt. Rev. 14, 173 (2007) [http://dx.doi.org/10.1007/s10043-007-0173-3].
- P. Valley, M. R. Dodge, J. Schwiegerling, G. Peyman, and N. Peyghambarian, Opt. Lett. 35, 2582 (2010) [http://dx.doi.org/10.1364/ol.35.002582].
- Y. H. Lin, M. S. Chen, and H. C. Lin, Opt. Express 19, 4714 (2011) [http://dx.doi.org/10.1364/oe.19.004714].
- P. J. W. Hands, S. A. Tatarkova, A. K. Kirby, and G. D. Love, Opt. Express 14, 4525 (2006) [http://dx.doi.org/10.1364/oe.14.004525].
- M. Kawamura, M. Ye, and S. Sato, Jpn. J. Appl. Phys. 44, 6098 (2005) [http://dx.doi.org/10.1143/jjap.44.6098].
- M. Kawamura, M. Ye, and S. Sato, Mol. Cryst. Liq. Cryst. 478, 135 (2007) [http://dx.doi.org/10.1080/15421400701681455].
- H. C. Lin and Y. H. Lin, Appl. Phys. Lett. 97, 063505 (2010) [http://dx.doi.org/10.1063/1.3479051].
- H. C. Lin and Y. H. Lin, Jpn. J. Appl. Phys. 49, 1025021 (2010) [http://dx.doi.org/10.1143/jjap.49.102502].
- B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley, New York, 1991).
- S. Sato, Jpn. J. Appl. Phys. 18, 1679 (1979). https://doi.org/10.1143/JJAP.18.1679
- H. T. Dai, Y. J. Liu, X. W. Sun, and D. Luo, Opt. Express 17, 4317 (2009) [http://dx.doi.org/10.1364/oe.17.004317].
- Y. Choi, J. H. Park, J. H. Kim, and S. D. Lee, Opt. Mater. 21, 643 (2003) [http://dx.doi.org/10.1016/s0925-3467(02)00215-x].
- Y. J. Liu, X. W. Sun, and Q. Wang, J. Cryst. Growth 288, 192 (2006) [http://dx.doi.org/10.1016/j.jcrysgro.2005.12.025].
- H. Ren, Y. H. Fan, and S. T. Wu, Opt. Lett. 29, 1608 (2004) [http://dx.doi.org/10.1364/ol.29.001608].
- H. Ren and S. T. Wu, Appl. Opt. 44, 7730 (2005) [http://dx.doi.org/10.1364/ao.44.007730].
- H. S. Ji, J. H. Kim, and S. Kumar, Opt. Lett. 28, 1147 (2003) [http://dx.doi.org/10.1364/OL.28.001147].
- J. H. Kim and S. Kumar, Jpn. J. Appl. Phys. 43, 7050 (2004) [http://dx.doi.org/10.1143/jjap.43.7050].
- S. T. Kowel, D. S. Cleverly, and P. G. Kornreich, Appl. Opt. 23, 278 (1984). https://doi.org/10.1364/AO.23.000278
- S. Sato, Opt. Rev. 6, 471 (1999). https://doi.org/10.1007/s10043-999-0471-z
- M. Ye and S. Sato, Jpn. J. Appl. Phys. 41, L571 (2002) [http://dx.doi.org/10.1143/JJAP.41.L571].
- M. Ye and S. Sato, Opt. Commun. 225, 277 (2003) [http://dx.doi.org/10.1016/j.optcom.2003.07.050].
- M. Ye, B. Wang, and S. Sato, Appl. Opt. 43, 6407 (2004) [http://dx.doi.org/10.1364/ao.43.006407].
- B. Wang, M. Ye, and S. Sato, Jpn. J. Appl. Phys. 44, 4979 (2005) [http://dx.doi.org/10.1143/JJAP.44.4979].
- M. Ye, Y. Yokoyama, and S. Sato, Proc. SPIE 5639, 124 (2004) [http://dx.doi.org/10.1117/12.576704].
- B. Wang, M. Ye, and S. Sato, IEEE Photonics Technol. Lett. 18, 79 (2006) [http://dx.doi.org/10.1109/LPT.2005.860397].
- M. Ye, B. Wang, and S. Sato, IEEE Photonics Technol. Lett. 19, 1295 (2007) [http://dx.doi.org/10.1109/lpt.2007.902290].
- M. Ye, B. Wang, M. Yamaguchi, and S. Sato, Jpn. J. Appl. Phys. 47, 4597 (2008) [http://dx.doi.org/10.1143/jjap.47.4597].
- M. Ye, B. Wang, and S. Sato, Opt. Express 16, 4302 (2008) [http://dx.doi.org/10.1364/oe.16.004302].
- S. Sato, A. Sugiyama, and R. Sato, Jpn. J. Appl. Phys. 24, 626 (1985). https://doi.org/10.1143/JJAP.24.626
- Y. H. Fan, H. Ren, and S. T. Wu, Opt. Express 13, 4141 (2005) [http://dx.doi.org/10.1364/opex.13.004141].
- B. Wang, M. Ye, and S. Sato, Jpn. J. Appl. Phys. 45, 7813 (2006) [http://dx.doi.org/10.1143/jjap.45.7813].
- M. Ye, B. Wang, M. Kawamura, and S. Sato, Electron. Lett 43, 474 (2007) [http://dx.doi.org/10.1049/el:20070138].
- B. Wang, M. Ye, and S. Sato, Opt. Commun. 250, 266 (2005) [http://dx.doi.org/10.1016/j.optcom.2005.02.035].
- O. Pishnyak, S. Sato, and O. D. Lavrentovich, Appl. Opt. 45, 4576 (2006) [http://dx.doi.org/10.1364/ao.45.004576].
- Y. H. Lin, H. S. Chen, H. C. Lin, Y. S. Tsou, H. K. Hsu, and W. Y. Li, Appl. Phys. Lett. 96, 113505 (2010) [http://dx.doi.org/10.1063/1.3360860].
- H. C. Lin and Y. H. Lin, Appl. Phys. Lett. 98, 083503 (2011) [http://dx.doi.org/10.1063/1.3559622].
- A. F. Naumov, M. Y. Loktev, I. R. Guralnik, and G. Vdovin, Opt. Lett. 23, 992 (1998) [http://dx.doi.org/10.1364/OL.23.000992].
- A. F. Naumov, G. D. Love, M. Y. Loktev, and F. L. Vladimirov, Opt. Express 4, 344 (1999). https://doi.org/10.1364/OE.4.000344
- G. D. Love and A. F. Naumov, Liq. Cryst. Today 10, 1 (2000) [http://dx.doi.org/10.1080/135831401750061465].
- I. P. Gural'nik and S. A. Samagin, Quant. Electron. 33, 430 (2003) [http://dx.doi.org/10.1070/QE2003v033n05ABEH002429].
- P. J. W. Hands, A. K. Kirby, and G. D. Love, Proc. SPIE 5518, 136 (2004) [http://dx.doi.org/10.1117/12.562359].
- N. Fraval, P. Joffre, S. Formont, and J. Chazelas, Appl. Opt. 48, 5301 (2009) [http://dx.doi.org/10.1364/ao.48.005301].
- N. Fraval and J. L. De Bougrenet De La Tocnaye, Appl. Opt. 49, 2778 (2010) [http://dx.doi.org/10.1364/ao.49.002778].
- S. P. Kotova, V. V. Patlan, and S. A. Samagin, Quant. Electron. 41, 58 (2011) [http://dx.doi.org/10.1070/QE2011v041n01ABEH014406].
- S. P. Kotova, V. V. Patlan, and S. A. Samagin, Quant. Electron. 41, 65 (2011) [http://dx.doi.org/10.1070/QE2011v041n01ABEH014407].
- B. Wang, M. Ye, M. Honma, T. Nose, and S. Sato, Jpn. J. Appl. Phys. 41, L1232 (2002) [http://dx.doi.org/10.1143/JJAP.41.L1232].
- H. Ren and S. T. Wu, Opt. Express 14, 11292 (2006) [http://dx.doi.org/10.1364/oe.14.011292].
- H. Ren, Y. H. Fan, S. Gauza, and S. T. Wu, Appl. Phys. Lett. 84, 4789 (2004) [http://dx.doi.org/10.1063/1.1760226].
- H. Ren, D. W. Fox, B. Wu, and S. T. Wu, Opt. Express 15, 11328 (2007) [http://dx.doi.org/10.1364/oe.15.011328].
- Y. Li and S. T. Wu, Opt. Express 19, 8045 (2011) [http://dx.doi.org/10.1364/oe.19.008045].
- B. Wang, M. Ye, and S. Sato, Appl. Opt. 43, 3420 (2004) [http://dx.doi.org/10.1364/ao.43.003420].
- K. Asatryan, V. Presnyakov, A. Tork, A. Zohrabyan, A. Bagramyan, and T. Galstian, Opt. Express 18, 13981 (2010) [http://dx.doi.org/10.1364/oe.18.013981].
- V. V. Sergan, T. A. Sergan, and P. J. Bos, Chem. Phys. Lett. 486, 123 (2010) [http://dx.doi.org/10.1016/j.cplett.2010.01.004].
- M. Ye, Y. Yokoyama, and S. Sato, Appl. Phys. Lett. 89, 141112 (2006) [http://dx.doi.org/10.1063/1.2358211].
- A. Y. G. Fuh, S. W. Ko, S. H. Huang, Y. Y. Chen, and T. H. Lin, Opt. Express 19, 2294 (2011) [http://dx.doi.org/10.1364/oe.19.002294].
- M. Honma, T. Nose, S. Yanase, R. Yamaguchi, and S. Sato, Opt. Express 17, 10998 (2009) [http://dx.doi.org/10.1364/oe.17.010998].
- M. C. Tseng, F. Fan, C. Y. Lee, A. Murauski, V. Chigrinov, and H. S. Kwok, J. Appl. Phys. 109, 083109 (2011) [http://dx.doi.org/10.1063/1.3567937].
- H. Ren and S. T. Wu, Appl. Phys. Lett. 82, 22 (2003) [http://dx.doi.org/10.1063/1.1534915].
- V. V. Presnyakov and T. V. Galstian, J. Appl. Phys. 97, 103101 (2005) [http://dx.doi.org/10.1063/1.1896436].
- V. V. Presnyakov, K. E. Asatryan, T. V. Galstian, and A. Tork, Opt. Express 10, 865 (2002). https://doi.org/10.1364/OE.10.000865
- H. Ren, Y. H. Fan, and S. T. Wu, J. Phys. D: Appl. Phys. 37, 400 (2004) [http://dx.doi.org/10.1088/0022-3727/37/3/015].
- M. S. Millan, J. Oton, and E. Perez-Cabre, Opt. Express 14, 9103 (2006) [http://dx.doi.org/10.1364/oe.14.009103].
- N. A. Riza and M. C. DeJule, Opt. Lett. 19, 1013 (1994). https://doi.org/10.1364/OL.19.001013
- C. J. Hsu, P. C. P. Chao, and Y. Y. Kao, Microsyst. Technol. 17, 923 (2011) [http://dx.doi.org/10.1007/s00542-010-1187-5].
- Y. Y. Kao, P. C. P. Chao, and C. W. Hsueh, Opt. Express 18, 18506 (2010) [http://dx.doi.org/10.1364/oe.18.018506].
- G. Li, D. L. Mathine, P. Valley, P. Ayras, J. N. Haddock, M. S. Giridhar, G. Williby, J. Schwiegerling, G. R. Meredith, B. Kippelen, S. Honkanen, and N. Peyghambarian, Proc. Natl. Acad. Sci. U. S. A. 103, 6100 (2006) [http://dx.doi.org/10.1073/pnas.0600850103].
- P. Valley, D. L. Mathine, M. R. Dodge, J. Schwiegerling, G. Peyman, and N. Peyghambarian, Opt. Lett. 35, 336 (2010) [http://dx.doi.org/10.1364/ol.35.000336].
- G. Li, P. Valley, P.Ayras, D. L. Mathine, S. Honkanen, and N. Peyghambarian, Appl. Phys. Lett. 90, 111105 (2007) [http://dx.doi.org/10.1063/1.2712773].
- H. Ren, Y. H. Lin, Y. H. Fan, and S. T. Wu, Appl. Phys. Lett. 86, 141110 (2005) [http://dx.doi.org/10.1063/1.1899749].
- Y. H. Lin, H. Ren, Y. H. Fan, Y. H. Wu, and S. T. Wu, J. Appl. Phys. 98, 043112 (2005) [http://dx.doi.org/10.1063/1.2037191].
- H. Ren, Y. H. Lin, C. H. Wen, and S. T. Wu, Appl. Phys. Lett. 87, 191106 (2005) [http://dx.doi.org/10.1063/1.2126107].
- Y. H. Lin, H. Ren, Y. H. Wu, Y. Zhao, J. Fang, Z. Ge, and S. T. Wu, Opt. Express 13, 8746 (2005) [http://dx.doi.org/10.1364/opex.13.008746].
- H. Ren, Y. H. Lin, and S. T. Wu, Appl. Phys. Lett. 88, 061123 (2006) [http://dx.doi.org/10.1063/1.2173248].
- Y. Huang, C. H. Wen, and S. T. Wu, Appl. Phys. Lett. 89, 021103 (2006) [http://dx.doi.org/10.1063/1.2219998].
- S. Y. Huang, T. C. Tung, C. L. Ting, H. C. Jau, M. S. Li, H. K. Hsu, and A. Y. G. Fuh, Applied Physics B: Lasers and Optics 104, 93 (2011) [http://dx.doi.org/10.1007/s00340-011-4498-z].
Cited by
- Liquid microlenses and waveguides from bulk nematic birefringent profiles vol.24, pp.19, 2016, https://doi.org/10.1364/OE.24.022177
- Electrically tunable-focusing and polarizer-free liquid crystal lenses for ophthalmic applications vol.21, pp.8, 2013, https://doi.org/10.1364/OE.21.009428
- High-speed dual-layer scanning photoacoustic microscopy using focus tunable lens modulation at resonant frequency vol.25, pp.22, 2017, https://doi.org/10.1364/OE.25.026427
- Using an Analytical Model to Design Liquid Crystal Microlenses vol.26, pp.8, 2014, https://doi.org/10.1109/LPT.2014.2306920
- Electrically tunable lens speeds up 3D orbital tracking vol.6, pp.6, 2015, https://doi.org/10.1364/BOE.6.002181
- Application of a non-hazardous vital dye for cell counting with automated cell counters vol.492, 2016, https://doi.org/10.1016/j.ab.2015.09.010
- A polarization-independent liquid crystal phase modulation using polymer-network liquid crystals in a 90° twisted cell vol.112, pp.2, 2012, https://doi.org/10.1063/1.4737260
- Hexagonal liquid crystal lens array for 3D endoscopy vol.23, pp.2, 2015, https://doi.org/10.1364/OE.23.000971
- Fast-Response Liquid Crystal Microlens vol.5, pp.4, 2014, https://doi.org/10.3390/mi5020300
- A bio-inspired optical system with a polymer membrane and integrated structure vol.11, pp.6, 2016, https://doi.org/10.1088/1748-3190/11/6/066008
- Polymer network liquid crystal grating/Fresnel lens fabricated by holography vol.44, pp.5, 2017, https://doi.org/10.1080/02678292.2016.1254295
- Consistent neural network empirical physical formula constructions for nonlinear scattering intensities of dye-doped nematic liquid crystals with ultraviolet pump laser-driven Fredericksz threshold shifts vol.158, 2018, https://doi.org/10.1016/j.ijleo.2017.12.093
- Tunable liquid crystal microlenses with crater polymer prepared by droplet evaporation vol.21, pp.25, 2013, https://doi.org/10.1364/OE.21.030731
- High quality micro liquid crystal phase lenses for full resolution image steering in auto-stereoscopic displays vol.22, pp.18, 2014, https://doi.org/10.1364/OE.22.021679
- An electrically tunable-focusing liquid crystal lens with a low voltage and simple electrodes vol.20, pp.3, 2012, https://doi.org/10.1364/OE.20.002045
- Polarizer-free imaging of liquid crystal lens vol.22, pp.16, 2014, https://doi.org/10.1364/OE.22.019824
- A polarisation-independent blue-phase liquid crystal lens array using gradient electrodes 2017, https://doi.org/10.1080/02678292.2017.1376127
- Multi-electrode tunable liquid crystal lenses with one lithography step vol.43, pp.2, 2018, https://doi.org/10.1364/OL.43.000271
- Modeling the carbon nanofiber addressed liquid crystal microlens array from experimentally observed optical phenomena vol.316, 2014, https://doi.org/10.1016/j.optcom.2013.09.064
- Electrically Tunable Liquid Crystal Lenses and Applications vol.596, pp.1, 2014, https://doi.org/10.1080/15421406.2014.918243
- An electrically tunable imaging system with separable focus and zoom functions using composite liquid crystal lenses vol.22, pp.10, 2014, https://doi.org/10.1364/OE.22.011427
- Simulation Study on Polarization-Independent Microlens Arrays Utilizing Blue Phase Liquid Crystals with Spatially-Distributed Kerr Constants vol.5, pp.4, 2014, https://doi.org/10.3390/mi5040859
- P-28: Contrast Enhancement for Imaging System using Electrically Tunable Liquid Crystal Lens vol.46, pp.1, 2015, https://doi.org/10.1002/sdtp.10074
- 18-2: Invited Paper : Liquid Crystal Lenses in Augmented Reality vol.48, pp.1, 2017, https://doi.org/10.1002/sdtp.11677
- Augmented reality with image registration, vision correction and sunlight readability via liquid crystal devices vol.7, pp.1, 2017, https://doi.org/10.1038/s41598-017-00492-2
- Electrically Tunable Ophthalmic Lenses for Myopia and Presbyopia Using Liquid Crystals vol.596, pp.1, 2014, https://doi.org/10.1080/15421406.2014.918321
- Paper No S1.3: Lead Zirconate Titanate-Based Transmissive Liquid Crystal Lens Approach vol.46, pp.S1, 2015, https://doi.org/10.1002/sdtp.10517
- Refraction of light on flat boundary of liquid crystals or anisotropic metamaterials vol.5, pp.1, 2017, https://doi.org/10.1080/21680396.2017.1341353
- A large bistable negative lens by integrating a polarization switch with a passively anisotropic focusing element vol.22, pp.11, 2014, https://doi.org/10.1364/OE.22.013138
- A polarisation-independent blue-phase liquid crystal microlens using an optically hidden dielectric structure vol.44, pp.4, 2017, https://doi.org/10.1080/02678292.2016.1226973
- An Electrically Tunable Polarizer for a Fiber System Based on a Polarization-Dependent Beam Size Derived From a Liquid Crystal Lens vol.6, pp.3, 2014, https://doi.org/10.1109/JPHOT.2014.2319103
- Concentrating Photovoltaic System Using a Liquid Crystal Lens vol.24, pp.24, 2012, https://doi.org/10.1109/LPT.2012.2224857
- Improvement of performance of liquid crystal microlens with polymer surface modification vol.22, pp.4, 2014, https://doi.org/10.1364/OE.22.004620
- A droplet manipulation on a liquid crystal and polymer composite film as a concentrator and a sun tracker for a concentrating photovoltaic system vol.113, pp.24, 2013, https://doi.org/10.1063/1.4812391
- A Polarizer-Free Liquid Crystal Lens Exploiting an Embedded-Multilayered Structure vol.27, pp.8, 2015, https://doi.org/10.1109/LPT.2015.2399932
- Variable focus microlens array with curved electrodes vol.27, pp.5, 2017, https://doi.org/10.1088/1361-6439/aa64ba
- A polarized bifocal switch based on liquid crystals operated electrically and optically vol.117, pp.4, 2015, https://doi.org/10.1063/1.4906495
- Polymer Network Liquid Crystal (PNLC) Lenticular Microlens Array With No Surface Treatment vol.12, pp.8, 2016, https://doi.org/10.1109/JDT.2016.2527633
- An endoscopic system adopting a liquid crystal lens with an electrically tunable depth-of-field vol.21, pp.15, 2013, https://doi.org/10.1364/OE.21.018079
- A Pico Projection System With Electrically Tunable Optical Zoom Ratio Adopting Two Liquid Crystal Lenses vol.8, pp.7, 2012, https://doi.org/10.1109/JDT.2012.2185215
- Full resolution auto-stereoscopic mobile display based on large scale uniform switchable liquid crystal micro-lens array vol.25, pp.9, 2017, https://doi.org/10.1364/OE.25.009654
- 129Xe NMR Investigation of the Anisotropic Environment of a Thermotropic Nematic Liquid Crystal 4-Cyano-4′-Pentylbiphenyl vol.607, pp.1, 2015, https://doi.org/10.1080/15421406.2014.930218
- All-optical dynamic focusing of light via coherent absorption in a plasmonic metasurface vol.7, pp.3, 2017, https://doi.org/10.1038/lsa.2017.157
- Liquid crystal lenses with tunable focal length vol.5, pp.2, 2017, https://doi.org/10.1080/21680396.2018.1440256
- Optofluidic Tunable Lenses for In-Plane Light Manipulation vol.9, pp.3, 2018, https://doi.org/10.3390/mi9030097
- Polarisation-independent blue-phase liquid crystal microlens array with different dielectric layer pp.1366-5855, 2018, https://doi.org/10.1080/02678292.2018.1550221
- A blue-phase liquid crystal lens array based on dual square ring-patterned electrodes pp.1366-5855, 2019, https://doi.org/10.1080/02678292.2018.1549284
- Resolving the Vergence Accommodation Conflict in VR and AR via Tunable Liquid Crystal Lenses vol.49, pp.1, 2018, https://doi.org/10.1002/sdtp.12272
- Design of an Electrically Tunable Micro-Lens Based on Graded Photonic Crystal vol.8, pp.7, 2018, https://doi.org/10.3390/cryst8070303
- Intensity modulation lens on the basis of nano-scale golden rods and liquid crystal layer vol.50, pp.6, 2018, https://doi.org/10.1007/s11082-018-1501-5
- Focal stack camera in all-in-focus imaging via an electrically tunable liquid crystal lens doped with multi-walled carbon nanotubes vol.26, pp.10, 2018, https://doi.org/10.1364/OE.26.012441