References
- T. M. Tritt, Annu. Rev. Mater. Res. 41, 433 (2011) [http://dx.doi.org/10.1146/annurev-matsci-062910-100453].
- D. K. C. MacDonald, Thermoelectricity: An Introduction to the Principles (John Wiley & Sons, New York, 1962).
- R. R. Heikes and R. W. Ure, Thermoelectricity: Science and Engineering (Interscience Publishers, New York, 1961).
- I. B. Cadoff and E. Miller, Thermoelectric Materials and Devices (Reinhold Publishing, New York, 1960).
- P. H. Egli, Thermoelectricity: Including the Proceedings of the Conference on Thermoelectricity, September, 1958 (John Wiley & Sons, New York, 1960).
- L. D. Chen, X. Y. Huang, M. Zhou, X. Shi, and W. B. Zhang, J. Appl. Phys. 99, 064305 (2006) [http://dx.doi.org/10.1063/1.2180432].
- L. D. Zhao, B. P. Zhang, J. F. Li, M. Zhou, W. S. Liu, and J. Liu, J. Alloys Compd. 455, 259 (2008) [http://dx.doi.org/10.1016/j.jallcom.2007.01.015].
- X. Y. Zhao, X. Shi, L. D. Chen, W. Q. Zhang, W. B. Zhang, and Y. Z. Pel, J. Appl. Phys. 99, 053711 (2006) [http://dx.doi.org/10.1063/1.2172705].
- J. R. Sootsman, H. Kong, C. Uher, J. J. D'Angelo, C.-I. Wu, T. P. Hogan, T. Caillat, and M. G. Kanatzidis, Angew. Chem. Int. Ed. 47, 8618 (2008) [http://dx.doi.org/10.1002/anie.200803934].
- H. Li, X. Tang, X. Su, and Q. Zhang, Appl. Phys. Lett. 92, 202114 (2008) [http://dx.doi.org/10.1063/1.2936277].
- W. Kim, J. Zide, A. Gossard, D. Klenov, S. Stemmer, A. Shakouri, and A. Majumdar, Phys. Rev. Lett. 96, 045901 (2006) [http://dx.doi.org/10.1103/PhysRevLett.96.045901].
- A. Majumdar, Science 303, 777 (2004) [http://dx.doi.org/10.1126/science.1093164].
- J. S. Rhyee, K. H. Lee, S. M. Lee, E. Cho, S. I. Kim, E. Lee, Y. S. Kwon, J. H. Shim, and G. Kotliar, Nature 459, 965 (2009) [http://dx.doi.org/10.1038/nature08088].
- A. F. Ioffe, Semiconductor Thermoelements, and Thermoelectric Cooling (Infosearch, London, UK, 1957).
- Jet Propulsion Laboratory. Voyager. Retrieved November, 2011 from http://voyager.jpl.nasa.gov.
- The Auto Channel. Retrieved November, 2011 from http://www.theautochannel.com.
- Hui Mao. Retrieved November, 2011 from http://www.huimao.com/.
- TES NewEnergy Corporation. Retrieved November, 2011 from http://www.tes-ne.com/.
- M. S. Dresselhaus, G. Chen, M. Y. Tang, R. Yang, H. Lee, D. Wang, Z. Ren, J. P. Fleurial, and P. Gogna, Adv. Mater. 19, 1043 (2007) [http://dx.doi.org/10.1002/adma.200600527].
- M. G. Kanatzidis, Chem. Mater. 22, 648 (2010) [http://dx.doi.org/10.1021/cm902195j].
- A. Boukai, K. Xu and J. Heath, Adv. Mater. 18, 864, (2006) [http://dx/doi.org/10.1002/adma200502194].
- T. E. Humphrey and H. Linke, Phys. Rev. Lett. 94, 096601 (2005) [http://dx.doi.org/10.1103/PhysRevLett.94.096601].
- L. D. Hicks and M. S. Dresselhaus, Phys. Rev. B 47, 12727 (1993) [http://dx.doi.org/10.1103/PhysRevB.47.12727].
- H. Ohta, S. Kim, Y. Mune, T. Mizoguchi, K. Nomura, S. Ohta, T. Nomura, Y. Nakanishi, Y. Ikuhara, M. Hirano, H. Hosono, and K. Koumoto, Nat. Mater. 6, 129 (2007) [http://dx.doi.org/10.1038/nmat1821].
- J. F. Li, W. S. Liu, L. D. Zhao, and M. Zhou, NPG Asia Mater. 2, 152 (2010) [http://dx.doi.org/10.1038/asiamat.2010.138].
- N. Mingo, D. Hauser, N. P. Kobayashi, M. Plissonnier, and A. Shakouri, Nano Lett. 9, 711 (2009) [http://dx.doi.org/10.1021/n18031982].
- R. Venkatasubramanian, E. Siivola, T. Colpitts, and B. O'Quinn, Nature 413, 597 (2001) [http://dx.doi.org/10.1038/35098012].
- T. C. Harman, P. J. Taylor, M. P. Walsh, and B. E. LaForge, Science 297, 2229 (2002) [http://dx.doi.org/10.1126/science.1072886].
- W. Liang, O. Rabin, A. I. Hochbaum, M. Fardy, M. Zhang, and P. Yang, Nano Res. 2, 394 (2009) [http://dx.doi.org/10.1007/s12274-009-9039-2].
- L. D. Hicks and M. S. Dresselhaus, Phys. Rev. B 47, 16631 (1993) [http://dx.doi.org/10.1103/PhysRevB.47.16631].
- A. Casian, I. Sur, A. Sandu, H. Scherrer, and S. Scherrer, Proceedings of the 16th International Conference on Thermoelectrics (Dresden, German 1997 Aug. 26-29, IEEE) p. 442. [http://dx.doi.org/10.1109/ICT.1997.667182].
- M. S. Dresselhaus, G. Dresselhaus, X. Sun, Z. Zhang, S. B. Cronin, and T. Koga, Phys. Solid State 41, 679 (1999) [http://dx.doi.org/10.1134/1.1130849].
- N. Mingo, Appl. Phys. Lett. 85, 5986 (2004) [http://dx.doi.org/10.1063/1.1829391].
- N. Mingo, Appl. Phys. Lett. 84, 2652 (2004) [http://dx.doi.org/10.1063/1.1695629].
- T. T. M. Vo, A. J. Williamson, V. Lordi, and G. Galli, Nano Lett. 8, 1111 (2008) [http://dx.doi.org/10.1021/nl073231d].
- A. I. Boukai, Y. Bunimovich, J. Tahir-Kheli, J. K. Yu, W. A. Goddard Iii, and J. R. Heath, Nature 451, 168 (2008) [http://dx.doi.org/10.1038/nature06458].
- S. H. Lee, W. Shim, S. Y. Jang, J. W. Roh, P. Kim, J. Park, and W. Lee, Nanotechnology 22, 295707 (2011) [http://dx.doi.org/10.1088/0957-4484/22/29/295707].
- M. Fardy, A. L. Hochbaum, J. Goldberger, M. M. Zhang, and P. Yang, Adv. Mater. 19, 3047 (2007) [http://dx.doi.org/10.1002/adma.200602674].
- G. Zhang, Q. Yu, W. Wang, and X. Li, Adv. Mater. 22, 1959 (2010) [http://dx.doi.org/10.1002/adma.200903812].
- G. Zhang, W. Wang, and X. Li, Adv. Mater. 20, 3654 (2008) [http://dx.doi.org/10.1002/adma.200800162].
- J. Kang, J. W. Roh, W. Shim, J. Ham, J. S. Noh, and W. Lee, Adv. Mater. 23, 3414 (2011) [http://dx.doi.org/10.1002/adma.201101460].
- M. Hu, K. P. Giapis, J. V. Goicochea, X. Zhang, and D. Poulikakos, Nano Lett. 11, 618 (2011) [http://dx.doi.org/10.1021/nl103718a].
- A. I. Hochbaum, R. Chen, R. D. Delgado, W. Liang, E. C. Garnett, M. Najarian, A. Majumdar, and P. Yang, Nature 451, 163 (2008) [http://dx.doi.org/10.1038/nature06381].
- J. W. Roh, K. Hippalgaonkar, J. H. Ham, R. Chen, M. Z. Li, P. Ercius, A. Majumdar, W. Kim, and W. Lee, ACS Nano 5, 3954 (2011) [http://dx.doi.org/10.1021/nn200474d].
- A. L. Moore, M. T. Pettes, F. Zhou, and L. Shi, J. Appl. Phys. 106, 034310 (2009) [http://dx.doi.org/10.1063/1.3191657].
- M. Meyyappan and M. K. Sunkara, Inorganic Nanowires: Applications, Properties, and Characterization (CRC Press, Boca Raton, 2010).
- K. Devami, D. Kang, J. Lee, and M. Meyyappan, Chem. Phys. Lett., 504, 62 (2011) [http://dx.doi.org/10.1016/j.cplett.2011.01.053].
- K. Davami, H. M. Ghassemi, X. Sun, R. S. Yassar, J. S. Lee, and M. Meyyappan, Nanotechnology 22, 435204 (2011) [http://dx.doi.org/10.1088/0957-4484/22/43/435204].
- M. Tian, J. Wang, J. Kurtz, T. E. Mallouk, and M. H. W. Chan, Nano Lett. 3, 919 (2003) [http://dx.doi.org/10.1021/nl034217d].
- F. S. S. Chien, C. L. Wu, Y. C. Chou, T. T. Chen, S. Gwo, and W. F. Hsieh, Appl. Phys. Lett. 75, 2429 (1999) [http://dx.doi.org/10.1063/1.125037].
- Y. J. Chen, J. H. Hsu, and H. N. Lin, Nanotechnology 16, 1112 (2005) [http://dx.doi.org/10.1088/0957-4484/16/8/020].
- S. A. Harfenist, S. D. Cambron, E. W. Nelson, S. M. Berry, A. W. Isham, M. M. Crain, K. M. Walsh, R. S. Keynton, and R. W. Cohn, Nano Lett. 4, 1931 (2004) [http://dx.doi.org/10.1021/nl048919u].
- F. Zhou, A. L. Moore, M. T. Pettes, Y. Lee, J. H. Seol, Q. L. Ye, L. Rabenberg, and L. Shi, J. Phys. D: Appl. Phys. 43, 025406 (2010) [http://dx.doi.org/10.1088/0022-3727/43/2/025406].
- Y. H. Tang, Y. F. Zheng, C. S. Lee, and S. T. Lee, Chem. Phys. Lett. 328, 346 (2000) [http://dx.doi.org/10.1016/S0009-2614(00)00862-9].
- A. R. Abramson, W. C. Kim, S. T. Huxtable, H. Yan, Y. Wu, A. Majumdar, C. L. Tien, and P. Yang, J. Microelectromech. Syst. 13, 505 (2004) [http://dx.doi.org/10.1109/jmems.2004.828742].
- G. U. Sumanasekera, L. Grigorian, and P. C. Eklund, Meas. Sci. Technol. 11, 273 (2000) [http://dx.doi.org/10.1088/0957-0233/11/3/315].
- J. H. Seol, A. L. Moore, S. K. Saha, F. Zhou, L. Shi, Q. L. Ye, R. Scheffler, N. Mingo, and T. Yamada, J. Appl. Phys. 101, 023706 (2007) [http://dx.doi.org/10.1063/1.2430508].
- F. Zhou, J. H. Seol, A. L. Moore, L. Shi, Q. L. Ye, and R. Scheffler, J. Phys. Condens. Matter 18, 9651 (2006) [http://dx.doi.org/10.1088/0953-8984/18/42/011].
- Y. M. Zuev, J. S. Lee, C. Galloy, H. Park, and P. Kim, Nano Lett. 10, 3037 (2010) [http://dx.doi.org/10.1021/nl101505q].
- T. Ono, C. C. Fan, and M. Esashi, J. Microelectromech. Syst. 15, 1 (2005) [http://dx.doi.org/10.1088/0960-1317/15/1/001].
- L. Shi, D. Li, C. Yu, W. Jang, D. Kim, Z. Yao, P. Kim, and A. Majumdar, J. Heat Transfer 125, 881 (2003) [http://dx.doi.org/10.1115/1.1597619].
- H. E. Romero, G. U. Sumanasekera, G. D. Mahan, and P. C. Eklund, Phys. Rev. B 65, 205410 (2002) [http://dx.doi.org/10.1103/PhysRevB.65.205410].
- L. Shi, Q. Hao, C. Yu, N. Mingo, X. Kong, and Z. L. Wang, Appl. Phys. Lett. 84, 2638 (2004) [http://dx.doi.org/10.1063/1.1697622].
- F. Zhou, J. Szczech, M. T. Pettes, A. L. Moore, S. Jin, and L. Shi, Nano Lett. 7, 1649 (2007) [http://dx.doi.org/10.1021/nl0706143].
- J. Zhou, C. Jin, J. H. Seol, X. Li, and L. Shi, Appl. Phys. Lett. 87, 133109 (2005) [http://dx.doi.org/10.1063/1.2058217].
- W. Wang, F. Jia, Q. Huang, and J. Zhang, Microelectron. Eng. 77, 223 (2005) [http://dx.doi.org/10.1016/j.mee.2004.11.005].
- A. Nikolaeva, T. E. Huber, D. Gitsu, and L. Konopko, Phys. Rev. B 77, 035422 (2008) [http://dx.doi.org/10.1103/PhysRevB.77.035422].
- N. B. Duarte, Thermopower measurement of goild nanowire systems using a micromachined workbench, PhD dissertation (The Pennsylvania State University, State College, PA, 2008)
Cited by
- Influence of surface states and size effects on the Seebeck coefficient and electrical resistance of Bi1−xSbxnanowire arrays vol.9, pp.9, 2017, https://doi.org/10.1039/C6NR09624G
- Thermoelectric properties of semiconductor nanowire networks vol.119, pp.12, 2016, https://doi.org/10.1063/1.4944715
- Nanostructured materials for supercapacitors vol.31, pp.5, 2013, https://doi.org/10.1116/1.4802772
- Structural and compositional characterization of Bi1−xSbx nanowire arrays grown by pulsed deposition to improve growth uniformity vol.365, 2015, https://doi.org/10.1016/j.nimb.2015.07.107