DOI QR코드

DOI QR Code

Nanowires in Thermoelectric Devices

  • Davami, Keivan (Division of IT Convergence Engineering, Pohang University of Science and Technology) ;
  • Lee, Jeong-Soo (Division of IT Convergence Engineering, Pohang University of Science and Technology) ;
  • Meyyappan, M. (Division of IT Convergence Engineering, Pohang University of Science and Technology, National Aeronautics and Space Administration Ames Research Center)
  • Published : 2011.12.25

Abstract

The low efficiency of bulk thermoelectric materials has limited the widespread application of thermoelectric power generation. Theoretical and experimental investigations indicate that materials prepared in the form of nanowires show higher thermoelectric coefficients, thus promising to revolutionize the field. This article reviews the basics of thermoelectric power generation, conventional devices, the role of nanowires and the current status of the field.

Keywords

References

  1. T. M. Tritt, Annu. Rev. Mater. Res. 41, 433 (2011) [http://dx.doi.org/10.1146/annurev-matsci-062910-100453].
  2. D. K. C. MacDonald, Thermoelectricity: An Introduction to the Principles (John Wiley & Sons, New York, 1962).
  3. R. R. Heikes and R. W. Ure, Thermoelectricity: Science and Engineering (Interscience Publishers, New York, 1961).
  4. I. B. Cadoff and E. Miller, Thermoelectric Materials and Devices (Reinhold Publishing, New York, 1960).
  5. P. H. Egli, Thermoelectricity: Including the Proceedings of the Conference on Thermoelectricity, September, 1958 (John Wiley & Sons, New York, 1960).
  6. L. D. Chen, X. Y. Huang, M. Zhou, X. Shi, and W. B. Zhang, J. Appl. Phys. 99, 064305 (2006) [http://dx.doi.org/10.1063/1.2180432].
  7. L. D. Zhao, B. P. Zhang, J. F. Li, M. Zhou, W. S. Liu, and J. Liu, J. Alloys Compd. 455, 259 (2008) [http://dx.doi.org/10.1016/j.jallcom.2007.01.015].
  8. X. Y. Zhao, X. Shi, L. D. Chen, W. Q. Zhang, W. B. Zhang, and Y. Z. Pel, J. Appl. Phys. 99, 053711 (2006) [http://dx.doi.org/10.1063/1.2172705].
  9. J. R. Sootsman, H. Kong, C. Uher, J. J. D'Angelo, C.-I. Wu, T. P. Hogan, T. Caillat, and M. G. Kanatzidis, Angew. Chem. Int. Ed. 47, 8618 (2008) [http://dx.doi.org/10.1002/anie.200803934].
  10. H. Li, X. Tang, X. Su, and Q. Zhang, Appl. Phys. Lett. 92, 202114 (2008) [http://dx.doi.org/10.1063/1.2936277].
  11. W. Kim, J. Zide, A. Gossard, D. Klenov, S. Stemmer, A. Shakouri, and A. Majumdar, Phys. Rev. Lett. 96, 045901 (2006) [http://dx.doi.org/10.1103/PhysRevLett.96.045901].
  12. A. Majumdar, Science 303, 777 (2004) [http://dx.doi.org/10.1126/science.1093164].
  13. J. S. Rhyee, K. H. Lee, S. M. Lee, E. Cho, S. I. Kim, E. Lee, Y. S. Kwon, J. H. Shim, and G. Kotliar, Nature 459, 965 (2009) [http://dx.doi.org/10.1038/nature08088].
  14. A. F. Ioffe, Semiconductor Thermoelements, and Thermoelectric Cooling (Infosearch, London, UK, 1957).
  15. Jet Propulsion Laboratory. Voyager. Retrieved November, 2011 from http://voyager.jpl.nasa.gov.
  16. The Auto Channel. Retrieved November, 2011 from http://www.theautochannel.com.
  17. Hui Mao. Retrieved November, 2011 from http://www.huimao.com/.
  18. TES NewEnergy Corporation. Retrieved November, 2011 from http://www.tes-ne.com/.
  19. M. S. Dresselhaus, G. Chen, M. Y. Tang, R. Yang, H. Lee, D. Wang, Z. Ren, J. P. Fleurial, and P. Gogna, Adv. Mater. 19, 1043 (2007) [http://dx.doi.org/10.1002/adma.200600527].
  20. M. G. Kanatzidis, Chem. Mater. 22, 648 (2010) [http://dx.doi.org/10.1021/cm902195j].
  21. A. Boukai, K. Xu and J. Heath, Adv. Mater. 18, 864, (2006) [http://dx/doi.org/10.1002/adma200502194].
  22. T. E. Humphrey and H. Linke, Phys. Rev. Lett. 94, 096601 (2005) [http://dx.doi.org/10.1103/PhysRevLett.94.096601].
  23. L. D. Hicks and M. S. Dresselhaus, Phys. Rev. B 47, 12727 (1993) [http://dx.doi.org/10.1103/PhysRevB.47.12727].
  24. H. Ohta, S. Kim, Y. Mune, T. Mizoguchi, K. Nomura, S. Ohta, T. Nomura, Y. Nakanishi, Y. Ikuhara, M. Hirano, H. Hosono, and K. Koumoto, Nat. Mater. 6, 129 (2007) [http://dx.doi.org/10.1038/nmat1821].
  25. J. F. Li, W. S. Liu, L. D. Zhao, and M. Zhou, NPG Asia Mater. 2, 152 (2010) [http://dx.doi.org/10.1038/asiamat.2010.138].
  26. N. Mingo, D. Hauser, N. P. Kobayashi, M. Plissonnier, and A. Shakouri, Nano Lett. 9, 711 (2009) [http://dx.doi.org/10.1021/n18031982].
  27. R. Venkatasubramanian, E. Siivola, T. Colpitts, and B. O'Quinn, Nature 413, 597 (2001) [http://dx.doi.org/10.1038/35098012].
  28. T. C. Harman, P. J. Taylor, M. P. Walsh, and B. E. LaForge, Science 297, 2229 (2002) [http://dx.doi.org/10.1126/science.1072886].
  29. W. Liang, O. Rabin, A. I. Hochbaum, M. Fardy, M. Zhang, and P. Yang, Nano Res. 2, 394 (2009) [http://dx.doi.org/10.1007/s12274-009-9039-2].
  30. L. D. Hicks and M. S. Dresselhaus, Phys. Rev. B 47, 16631 (1993) [http://dx.doi.org/10.1103/PhysRevB.47.16631].
  31. A. Casian, I. Sur, A. Sandu, H. Scherrer, and S. Scherrer, Proceedings of the 16th International Conference on Thermoelectrics (Dresden, German 1997 Aug. 26-29, IEEE) p. 442. [http://dx.doi.org/10.1109/ICT.1997.667182].
  32. M. S. Dresselhaus, G. Dresselhaus, X. Sun, Z. Zhang, S. B. Cronin, and T. Koga, Phys. Solid State 41, 679 (1999) [http://dx.doi.org/10.1134/1.1130849].
  33. N. Mingo, Appl. Phys. Lett. 85, 5986 (2004) [http://dx.doi.org/10.1063/1.1829391].
  34. N. Mingo, Appl. Phys. Lett. 84, 2652 (2004) [http://dx.doi.org/10.1063/1.1695629].
  35. T. T. M. Vo, A. J. Williamson, V. Lordi, and G. Galli, Nano Lett. 8, 1111 (2008) [http://dx.doi.org/10.1021/nl073231d].
  36. A. I. Boukai, Y. Bunimovich, J. Tahir-Kheli, J. K. Yu, W. A. Goddard Iii, and J. R. Heath, Nature 451, 168 (2008) [http://dx.doi.org/10.1038/nature06458].
  37. S. H. Lee, W. Shim, S. Y. Jang, J. W. Roh, P. Kim, J. Park, and W. Lee, Nanotechnology 22, 295707 (2011) [http://dx.doi.org/10.1088/0957-4484/22/29/295707].
  38. M. Fardy, A. L. Hochbaum, J. Goldberger, M. M. Zhang, and P. Yang, Adv. Mater. 19, 3047 (2007) [http://dx.doi.org/10.1002/adma.200602674].
  39. G. Zhang, Q. Yu, W. Wang, and X. Li, Adv. Mater. 22, 1959 (2010) [http://dx.doi.org/10.1002/adma.200903812].
  40. G. Zhang, W. Wang, and X. Li, Adv. Mater. 20, 3654 (2008) [http://dx.doi.org/10.1002/adma.200800162].
  41. J. Kang, J. W. Roh, W. Shim, J. Ham, J. S. Noh, and W. Lee, Adv. Mater. 23, 3414 (2011) [http://dx.doi.org/10.1002/adma.201101460].
  42. M. Hu, K. P. Giapis, J. V. Goicochea, X. Zhang, and D. Poulikakos, Nano Lett. 11, 618 (2011) [http://dx.doi.org/10.1021/nl103718a].
  43. A. I. Hochbaum, R. Chen, R. D. Delgado, W. Liang, E. C. Garnett, M. Najarian, A. Majumdar, and P. Yang, Nature 451, 163 (2008) [http://dx.doi.org/10.1038/nature06381].
  44. J. W. Roh, K. Hippalgaonkar, J. H. Ham, R. Chen, M. Z. Li, P. Ercius, A. Majumdar, W. Kim, and W. Lee, ACS Nano 5, 3954 (2011) [http://dx.doi.org/10.1021/nn200474d].
  45. A. L. Moore, M. T. Pettes, F. Zhou, and L. Shi, J. Appl. Phys. 106, 034310 (2009) [http://dx.doi.org/10.1063/1.3191657].
  46. M. Meyyappan and M. K. Sunkara, Inorganic Nanowires: Applications, Properties, and Characterization (CRC Press, Boca Raton, 2010).
  47. K. Devami, D. Kang, J. Lee, and M. Meyyappan, Chem. Phys. Lett., 504, 62 (2011) [http://dx.doi.org/10.1016/j.cplett.2011.01.053].
  48. K. Davami, H. M. Ghassemi, X. Sun, R. S. Yassar, J. S. Lee, and M. Meyyappan, Nanotechnology 22, 435204 (2011) [http://dx.doi.org/10.1088/0957-4484/22/43/435204].
  49. M. Tian, J. Wang, J. Kurtz, T. E. Mallouk, and M. H. W. Chan, Nano Lett. 3, 919 (2003) [http://dx.doi.org/10.1021/nl034217d].
  50. F. S. S. Chien, C. L. Wu, Y. C. Chou, T. T. Chen, S. Gwo, and W. F. Hsieh, Appl. Phys. Lett. 75, 2429 (1999) [http://dx.doi.org/10.1063/1.125037].
  51. Y. J. Chen, J. H. Hsu, and H. N. Lin, Nanotechnology 16, 1112 (2005) [http://dx.doi.org/10.1088/0957-4484/16/8/020].
  52. S. A. Harfenist, S. D. Cambron, E. W. Nelson, S. M. Berry, A. W. Isham, M. M. Crain, K. M. Walsh, R. S. Keynton, and R. W. Cohn, Nano Lett. 4, 1931 (2004) [http://dx.doi.org/10.1021/nl048919u].
  53. F. Zhou, A. L. Moore, M. T. Pettes, Y. Lee, J. H. Seol, Q. L. Ye, L. Rabenberg, and L. Shi, J. Phys. D: Appl. Phys. 43, 025406 (2010) [http://dx.doi.org/10.1088/0022-3727/43/2/025406].
  54. Y. H. Tang, Y. F. Zheng, C. S. Lee, and S. T. Lee, Chem. Phys. Lett. 328, 346 (2000) [http://dx.doi.org/10.1016/S0009-2614(00)00862-9].
  55. A. R. Abramson, W. C. Kim, S. T. Huxtable, H. Yan, Y. Wu, A. Majumdar, C. L. Tien, and P. Yang, J. Microelectromech. Syst. 13, 505 (2004) [http://dx.doi.org/10.1109/jmems.2004.828742].
  56. G. U. Sumanasekera, L. Grigorian, and P. C. Eklund, Meas. Sci. Technol. 11, 273 (2000) [http://dx.doi.org/10.1088/0957-0233/11/3/315].
  57. J. H. Seol, A. L. Moore, S. K. Saha, F. Zhou, L. Shi, Q. L. Ye, R. Scheffler, N. Mingo, and T. Yamada, J. Appl. Phys. 101, 023706 (2007) [http://dx.doi.org/10.1063/1.2430508].
  58. F. Zhou, J. H. Seol, A. L. Moore, L. Shi, Q. L. Ye, and R. Scheffler, J. Phys. Condens. Matter 18, 9651 (2006) [http://dx.doi.org/10.1088/0953-8984/18/42/011].
  59. Y. M. Zuev, J. S. Lee, C. Galloy, H. Park, and P. Kim, Nano Lett. 10, 3037 (2010) [http://dx.doi.org/10.1021/nl101505q].
  60. T. Ono, C. C. Fan, and M. Esashi, J. Microelectromech. Syst. 15, 1 (2005) [http://dx.doi.org/10.1088/0960-1317/15/1/001].
  61. L. Shi, D. Li, C. Yu, W. Jang, D. Kim, Z. Yao, P. Kim, and A. Majumdar, J. Heat Transfer 125, 881 (2003) [http://dx.doi.org/10.1115/1.1597619].
  62. H. E. Romero, G. U. Sumanasekera, G. D. Mahan, and P. C. Eklund, Phys. Rev. B 65, 205410 (2002) [http://dx.doi.org/10.1103/PhysRevB.65.205410].
  63. L. Shi, Q. Hao, C. Yu, N. Mingo, X. Kong, and Z. L. Wang, Appl. Phys. Lett. 84, 2638 (2004) [http://dx.doi.org/10.1063/1.1697622].
  64. F. Zhou, J. Szczech, M. T. Pettes, A. L. Moore, S. Jin, and L. Shi, Nano Lett. 7, 1649 (2007) [http://dx.doi.org/10.1021/nl0706143].
  65. J. Zhou, C. Jin, J. H. Seol, X. Li, and L. Shi, Appl. Phys. Lett. 87, 133109 (2005) [http://dx.doi.org/10.1063/1.2058217].
  66. W. Wang, F. Jia, Q. Huang, and J. Zhang, Microelectron. Eng. 77, 223 (2005) [http://dx.doi.org/10.1016/j.mee.2004.11.005].
  67. A. Nikolaeva, T. E. Huber, D. Gitsu, and L. Konopko, Phys. Rev. B 77, 035422 (2008) [http://dx.doi.org/10.1103/PhysRevB.77.035422].
  68. N. B. Duarte, Thermopower measurement of goild nanowire systems using a micromachined workbench, PhD dissertation (The Pennsylvania State University, State College, PA, 2008)

Cited by

  1. Influence of surface states and size effects on the Seebeck coefficient and electrical resistance of Bi1−xSbxnanowire arrays vol.9, pp.9, 2017, https://doi.org/10.1039/C6NR09624G
  2. Thermoelectric properties of semiconductor nanowire networks vol.119, pp.12, 2016, https://doi.org/10.1063/1.4944715
  3. Nanostructured materials for supercapacitors vol.31, pp.5, 2013, https://doi.org/10.1116/1.4802772
  4. Structural and compositional characterization of Bi1−xSbx nanowire arrays grown by pulsed deposition to improve growth uniformity vol.365, 2015, https://doi.org/10.1016/j.nimb.2015.07.107