• Title/Summary/Keyword: inorganic content

Search Result 827, Processing Time 0.029 seconds

Influence of SiO2 Content on Wet-foam Stability for Creation of Porous Ceramics

  • Bhaskar, Subhasree;Park, Jung Gyu;Cho, Gae Hyung;Seo, Dong Nam;Kim, Ik Jin
    • Journal of the Korean Ceramic Society
    • /
    • v.51 no.5
    • /
    • pp.511-515
    • /
    • 2014
  • The thermodynamic instability of bubbles in wet-foam colloidal suspension is due to the substantial area of their gas/liquid interface. Several physical processes lead to gas diffusion from smaller to larger bubbles, resulting in a coarsening and Ostwald ripening of wet foam. This includes a narrowing of the bubble size distribution. The distribution and microstructure of porous ceramics, the adsorption free energy and Laplace pressure of $Al_2O_3$ particle-stabilized colloidal suspension, and $SiO_2$ content were investigated for tailoring the bubble size. Wet-foam stability of more than 80% is related to the degree of hydrophobicity with contact angles of $62-70^{\circ}$ achieved from the surfactant. The contact angle replaces part of the highly energetic interface and lowers the free energy of the system. This leads to an apparent increase in the surface tension (26-33 mN/m) of the colloidal suspension.

Effect of Inorganic Nanocomposite Based Liners on Deodorization of Kimchi

  • Chung, Kwon;Park, Hyun Jin;Shin, Yang Jai
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.27 no.2
    • /
    • pp.55-62
    • /
    • 2021
  • This study aims to reduce the rancid odor generated during the fermentation process of kimchi by inserting zinc oxide (ZnO) into an inorganic porous material with a high surface area to decompose or adsorb the fermentation odor. ZnO activated by the presence of moisture exhibits decomposition of rancid odors. Mixed with Titanium dioxide (TiO2), a photocatalyst. To manufacture the packaging liner used in this study, NaOH, ZnCl2, and TiO2 powder were placed in a tank with diatomite and water. The sludge obtained via a hydrothermal ultrasonication synthesis was sintered in an oven. After being pin-milled and melt-blended, the powders were mixed with linear low-density polyethylene (L-LDPE) to make a masterbatch (M/B), which was further used to manufacture liners. A gas detector (GasTiger 2000) was used to investigate the total amount of sulfur compounds during fermentation and determine the reduction rate of the odor-causing compounds. The packaging liner cross-section and surface were investigated using a scanning electron microscope-energy dispersive X-ray spectrometer (SEM-EDS) to observe the adsorption of sulfur compounds. A variety of sulfur compounds associated with the perceived unpleasant odor of kimchi were analyzed using gas chromatography-mass spectrometry (GC-MS). For the analyses, kimchi was homogenized at room temperature and divided into several sample dishes. The performance of the liner was evaluated by comparing the total area of the GC-MS signals of major off-flavor sulfur compounds during the five days of fermentation at 20℃. As a result, Nano-grade inorganic compound liners reduced the sulfur content by 67 % on average, compared to ordinary polyethylene (PE) foam liners. Afterwards SEM-EDS was used to analyze the sulfur content adsorbed by the liners. The findings of this study strongly suggest that decomposition and adsorption of the odor-generating compounds occur more effectively in the newly-developed inorganic nanocomposite liners.

Influence of Inorganic Filler on Properties of EPDM Compounds (무기 충전제가 EPDM 배합물의 특성에 미치는 영향)

  • Choi, Sung-Seen;Kim, Ok-Bae
    • Elastomers and Composites
    • /
    • v.46 no.2
    • /
    • pp.138-143
    • /
    • 2011
  • EPDM compounds and vulcanizates containing inorganic filler such as talc, calcium carbonate, or clay as well as carbon black were prepared, and the influence of inorganic filler on properties of the EPDM compounds and vulcanizates were investigated. The bound rubber contents did not significantly increase even though the inorganic filler was added. There were big aggregates in the EPDM samples with high loading inorganic filler. By adding the inorganic filler, the cure times tended to increase and the delta torque decreased. The modulus were on the whole decreased, whereas the elongation at break, tensile strength, and tear strength were increased by adding the inorganic filler. The decreased modulus and increased elongation at break can be explained with the decreased delta torque, the increases of tensile strength and tear strength can be explained with the increased elongation at break. By adding the inorganic filler, level of reinforcing in the EPDM compounds did not increase and the crosslink density decreased.

Changes of Inorganic Nutrient Contents in Leaf of 'Niitaka' Pear and Inorganic Nutrient Contents of Leaf Influenced by Meteorological Elements (배 신고 품종의 잎 내 무기성분의 시기별 함량 변화와 잎 내 무기성분 함량에 미치는 기후요인)

  • Kim Ik-Youl;Ryu Jong-Ho;Kim Mi-Young
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.7 no.3
    • /
    • pp.192-200
    • /
    • 2005
  • This study was conducted to investigate inorganic nutrient contents in spur leaf and shoot leaf of 'Niitaka' pear during the growing season and leaf inorganic nutrient contents as influenced by meteorological elements. The contents of N, P, K, and Mg were decreased in spur leaf during their vegetative growth, while Ca and Mn increased. The contents of N, P, K, Mg, and Fe showed no differences between spur leaf and shoot leaf. However Ca, Mn, Zn, and Cu contents were higher in spur leaf than those in shoot leaf, but B content was lower in spur leaf than those in shoot leaf. The content of N in shoot leaf was positively correlated with mean temperature, whereas negatively correlated with maximum temperature. The content of P in spur leaf was negatively correlated with maximum temperature. The content of Ca in spur leaf was negatively correlated with mean temperature, whereas positively correlated with maximum and minimum temperature. The contents of Mg and B in shoot and spur leaf were positively correlated with mean temperature, whereas negatively correlated with maximum and minimum temperature. The contents of Ca and Mn showed significant differences between spur leaf and shoot leaf at mid-July to early August. These results suggest that sampling is important to distinguish between spur leaf and shoot leaf for diagnosis of nutrient conditions in pear trees.

Effect of Extracting Conditions on the Mineral Content of Korean Red Ginseng Extract (추출조건(抽出條件)이 홍삼(紅蔘)엑기스의 무기성분(無機成分) 조성(組成)에 미치는 영향)

  • Sung, Hyun-Soon;Cho, Si-Houng;Park, Myung-Han;Yang, Cha-Bum
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.14 no.4
    • /
    • pp.387-390
    • /
    • 1985
  • The effect of extracting conditions on the content of inorganic compounds of red ginseng extract was studied with respect to the change in ethanolic concentration ranges of $0{\sim}90%$ and temperature of $70{\sim}100^{\circ}C$ during $1{\sim}5$ times of extraction. Each extraction time was taken 8 hours at given temperature. Little effect of temperature on inorganic compounds was observed, while higher ethanol concentrations, particularly higher than 70%, were resulted a significant decreased in their contents. The yield of inorganic compounds in water was shown 80% over after 3rd extraction, while content of crude ash was observed similar tendency and their contents were significant increased in water than in 70% ethanolic concentration. In the process of extraction with water, 1.55% of the potassium content was the highest value, and the smallest was 11ppm of the copper. But in the extraction ratio to raw mateirls, the highest ratio was 91.4% of the calcium, and smallest was 30.4.% of the magnesium.

  • PDF

Soil Properties of the Habitat of Lepista nuda (민자주방망이버섯 (Lepista nuda) 서식지의 토양인자 분석)

  • Lee, Yang-Suk;Joo, Eun-Young;Kim, Jong-Bong;Kim, Nam-Woo
    • The Korean Journal of Ecology
    • /
    • v.28 no.1
    • /
    • pp.25-29
    • /
    • 2005
  • This study was carried out to analyze the soil properties of Lepista nuda habitats to form a part of the studies on the characteristics of L. nuda. The soil samples collected from seven studied areas were investigated for soil properties such as soil moisture, soil pH, and the contents of organic and inorganic matters. The content of soil moisture was 29.7% and the content of organic matter was 32.1%. Total nitrogen was 0.74% and soil pH was 4.75, which was ranged from 3.6 to 5.20. In the content of inorganic matter, the content of Fe was highest as 1,024 ppm, K 183 ppm, Mn 21.9 ppm, Ca 2.02 ppm, Zn 1.46 ppm and Mg was lowest as 0.51 ppm.

Soil Organic Carbon Determination for Calcareous Soils (석회암 유래 토양의 토양유기탄소 분석법 연구)

  • Jung, Won-Kyo;Kim, Yoo-Hak
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.39 no.6
    • /
    • pp.396-402
    • /
    • 2006
  • Soil organic carbon has long been considered as the most critical factor to evaluate the soil quality, fertility, and fertilizer prescription. In addition, soil organic carbon may impact on greenhouse gas effects and global warming. Because of that, the management of soil organic carbon is increasingly important not only for improving soil quality but also for managing soil as a greenhouse gas source. Both wet and dry combustion have been used to determine soil organic carbon. Many benefits, such as automation and less labor, could the dry combustion method become more popular. Inorganic form of carbon could overestimate soil organic carbon when the dry combustion method was applied. Determination of soil inorganic carbon may contribute to the improved accuracy of soil organic carbon analysis using dry combustion method. Objectives of this research were 1) to develop soil inorganic carbon determination method using modified digital pressure calcimeter and 2) to evaluate soil organic carbon from calcareous soils using the dry and wet combustion method. Results showed that the significant linear relationship was found between soil inorganic carbon content and pressure calcimeter output. Inorganic carbon ranged from 22% to 28% of total carbon in the calcareous soil samples. Soil organic carbon content by dry combustion for calcareous soil was determined by subtracting inorganic carbon measured by the digital pressure calcimeter from total carbon. Soil organic carbon determined by dry combustion method was significantly correlated with that by wet combustion method. In conclusion, the digital pressure calcimeter may use to improve soil organic carbon determination for the calcareous soils by subtracting of soil inorganic carbon from total carbon determined by dry combustion method.

Red-Colored Phenomena of Ginseng(Panax ginseng C. A. Meyer) Root and Soil Environment (인삼근 적변현상과 근권 토양환경)

  • 양덕조;김용해
    • Journal of Ginseng Research
    • /
    • v.21 no.2
    • /
    • pp.91-97
    • /
    • 1997
  • In order to elucidate the mechanism of red-colored phenomena(RCP) in ginseng(Panax ginseng C.A. Meyer), distribution of inorganic elements of ginseng root and its surrounding soil, and microflora in the soil were investigated. Red brown colored-substances were accumulated in the cell wall of epidermis at early stage of red-colored ginseng (RCG). Cell wall of the late stage of RCG was disordered and microorganisms were shown in the disordered cell wall. Al, Si and Fe contents among inorpanic elements in the epidermis of RCG were higher at two or three times than that of healthy ginseng. On the other hand, K content was higher at three times in healthy ginseng than that of RCG. Especially, Fe content was higher at three times in lateral roots of RCG than that of healthy ginseng. Total 21 strains of microorganisms were isolated on the 523 medium from surface soil, surrounding soil of both healthy and RCG, and RCG. Six strains of microorganisms among them were resistant to 2 mM Fe. Two species in Bacillus app. and Lactobacillus app. , and one species in Micrococcus sp. and Npisseria sp. respectively were identified. It seemed that RCP was closely related with the distribution and uptake of inorganic elements, was also correlated Fe-independent metabolism of microorganisms.

  • PDF

Improvement of Hard Coating Characteristics by UV-curable Organic/Inorganic Hybrids (자외선 경화형 유기/무기 하이브리드에 의한 하드코팅 특성 향상)

  • Han, Ji-Ho;Kim, Hyung-Il
    • Applied Chemistry for Engineering
    • /
    • v.28 no.6
    • /
    • pp.626-631
    • /
    • 2017
  • Transparent plastic substrates require an improvement in properties such as surface hardness and thermal stability for optical applications. In this study, UV-curable organic/inorganic hybrids were synthesized to improve those properties. In order to make the optimum dispersion of inorganic component into the organic matrix, an in situ synthetic method was applied based on sol-gel reaction. Dispersion of the inorganic component in the organic urethane acrylate matrix was improved by using a proper combination of sol-gel reaction and fast UV-curing resulting in the formation of the transparent coating layer. Various alkoxy silanes were employed to vary both the degree of curing and coating properties of UV-curable organic/inorganic hybrids. UV-cured organic/inorganic hybrid coatings showed an improved surface hardness and thermal resistance depending on the content of inorganic component.

Ionic Compositions of PM2.5 during Summer and Winter in the Downtown Area of Jeju City in Jeju Island (제주시 도심지역에서 여름과 겨울의 PM2.5 이온조성 특성)

  • Lee, Ki-Ho;Hu, Chul-Goo
    • Journal of Environmental Science International
    • /
    • v.26 no.4
    • /
    • pp.447-456
    • /
    • 2017
  • Chemical properties of aerosols were investigated by analyzing the inorganic water-soluble content in $PM_{2.5}$ collected in the downtown area of Jeju City in Jeju Island. Due to an increase in both the number of visiting tourists and the size of local population, the number of cars in this area is increasing, causing an increase in $PM_{2.5}$. Eight $PM_{2.5}$-bound major inorganic ions were analyzed during the summer and winter periods. The water-soluble inorganic component represents a significant fraction of $PM_{2.5}$. In particular, secondary inorganic aerosols contribute 36.2% and 47.5% of $PM_{2.5}$ mass in summer and winter, respectively. Nitrate concentrations increase for $[NH_4{^+}]/[SO_4{^{2-}}]$>1.5, and excess ammonium, which is necessary for ammonium nitrate formation, is linearly correlated with nitrate. These results are clearly observed during the winter because conditions are more conducive to the formation of ammonium nitrate. A significant negative correlation between Nitrogen Oxidation Ratio (NOR) and temperature was observed. The obtained results can be useful for a better understanding of the aerosol dynamics in the downtown area in Jeju City.