• Title/Summary/Keyword: innovative climate

Search Result 69, Processing Time 0.024 seconds

A Sustainability Study Based on Farm Management Value-Chain Structure (농업경영의 가치사슬 구조에 근거한 지속가능성 연구)

  • Cheong, Hoon-Hui;Kim, Sa-Gyun;Heo, Seoung-Wook
    • Journal of Agricultural Extension & Community Development
    • /
    • v.16 no.2
    • /
    • pp.363-384
    • /
    • 2009
  • This study aimed at finding directions for Korean agriculture to establish a new paradigm of sustainable development. Various problematic issues and concerns in the environment necessitate the transformation of Korea's development paradigm from unconditional growth to "Green Growth" through new policies on green value and review of various advanced researches. In this research, the environment-friendly agriculture's problems, particularly in agribusiness were analyzed. Drawing from Michael Porter's Value Chain Analysis, this research developed a value chain model in agriculture that reflects the environment and the present situations. Future directions in the agriculture sector were also discussed. Korea realized food self-sufficiency through the green revolution in the early 1970s. However, a lot of problems have also occurred, including ground and water pollution and the destruction of ecosystems as a result of the overuse of pesticides and chemical fertilizers. In the late 1970s, the growing interest on environment-friendly agriculture led to the introduction of sustainable methods and techniques. Unfortunately however, these were not innovative enough to foster environment-friendly agriculture. Thereafter, the consumers' distrust on agricultural products has worsened and concerns about health have increased. In view of this, the Ministry of Food, Agriculture, Forestry and Fisheries introduced in December 1993 a system of Quality-Certified Products for organic and pesticide-free agri-foods. Although a fundamental step toward the sustainability of the global environment, this system was not enough to promote environment-friendly agriculture. In 2008, Korea's vision is for "Low Carbon Green Growth" to move forward while also coping with climate change. But primary sectors in a typical value chain do not consider the green value of their operations nor look at production from an environmental perspective. In order to attain sustainable development, there is a need to use less resources and energy than what is presently used in Korean agricultural and value production. The typical value chain should be transformed into a "closed-loop" such that the beginning and the end of the chain are linked together. Such structure allows the flow of materials, products and even wastes among participants in the chain in a sustained cycle. This may result in a zero-waste sustainable production without destroying the ecosystem.

  • PDF

A Study on the Estimation of Additional Cost for the Certification of Zero Energy Apartment Buildings (공동주택 제로에너지빌딩 인증을 위한 적정가산비 산정에 관한 연구)

  • Sa, Yong-gi;Haan, Chan Hoon
    • Korean Journal of Construction Engineering and Management
    • /
    • v.20 no.5
    • /
    • pp.21-30
    • /
    • 2019
  • Environmental and energy issues such as abnormal climate and depletion of fossil fuel due to global warming have emerged as a critical task to threaten human survival. As a result, interest in the Zero Energy Building is increasing as it is an innovative building that can significantly contribute to building energy reduction and greenhouse gas reduction. In the market, however, the added cost of construction is a major stumbling block to the revitalization of the Zero Energy certification. In this study, general private apartment complexes were selected for research, detailed elements for Zero Energy certification were presented based on the construction criteria for eco-friendly houses from the initial design stage, and the cost efficiency analysis of the components for certification were presented. It has been analyzed that only Grade 3 certification can be implemented in apartments due to technical level and physical limitations. Also, after reviewing the cost trend during the lifecycle cost, all expenses can be recovered within 13 years after completion only in the case of grade 5 of the Zero Energy Building. The additional costs proposed in the present study are reflected appropriately in the review of projects for apartments scheduled for order in the future to contribute to the revitalization of the Zero Energy Building certification.

Development of Forest Garden Model Based on Structural Characteristics of Forest Community in Korea (우리나라 산림군집의 경관구조 특성기반 숲정원 모델의 개발)

  • Seung-Hoon Chun;Yoon-Jung Cha;Sang-Gil Park;Jun-Gyu Bae;Kyung-Mee Lee
    • Ecology and Resilient Infrastructure
    • /
    • v.10 no.4
    • /
    • pp.237-249
    • /
    • 2023
  • This study was carried to establish a new landscape-oriented gardening model based on climate, vegetation, and forest landscape characteristics. In addition, innovative forest garden models were suggested through an integrated approach to the ecological characteristics of forest vegetation communities and existing garden planting types. For the study, the key landscape elements that make up the main forest vegetation community were identified. And the vertical layers and horizontal distribution patterns of the community structure were typified by diagnostic species and their growth forms & habits such as dominant species, character species, and differential species, and degree of dominance-sociability. Based on this, a standardized vegetation structure and formation was developed by stratifying the landscape into main features, minor features, and detailed features according to visual dominant elements. Also, the applicability of the forest garden model was examined by applying the concept of borrowing landscape to representative deciduous broadleaf forests in the temperate northern region of Korea. Additionally, an integrated forest garden models based on the conceptual definition and typology of forest gardens, and a strategic approach to forest vegetation were proposed

Seasonal Whole-plant Carbon Balance of Phyllospadix iwatensis on the Coast of the Korean Peninsula (한반도 연안에 분포하는 새우말의 탄소수지 계절적 변동)

  • SEUNG HYEON KIM;JONG-HYEOB KIM;HYEGWANG KIM;JIN WOO KU;KI YOUNG KIM;KUN-SEOP LEE
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.29 no.1
    • /
    • pp.28-41
    • /
    • 2024
  • The carbon balance serves as a valuable indicator of a plant's physiological status under diverse environmental conditions. We investigated the photosynthetic and respiratory responses of the Asian surfgrass Phyllospadix iwatensis along the northeast coast of the Korean peninsula in response to changing water temperature (ranging from 5℃ to 30℃) to estimate the seasonal whole-plant carbon balance through a series of incubation experiments. The maximum gross photosynthetic rate (Pmax) showed a significant difference among the temperature treatments, while there was no significant difference in photosynthetic efficiency (α). The maximum gross photosynthetic rate of P. iwatensis reached its peaks at 20℃ treatment (101.65 μmol O2 g-1 DW h-1) but decreased rapidly at 30℃. The saturation irradiance (Ik), compensation irradiance (Ic), and respiration rate (R) of P. iwatensis exhibited significant differences among the temperature treatments. The saturation irradiance increased up to 20-25℃ (121.59-124.50 μmol photons m-2 s-1) and sharply decreased at 30℃. The compensation irradiance and respiration rate increased steadily with rising water temperature. The ratio of Pmax to R (Pmax:R ratio) was the highest at 5℃ but dramatically decreased at 30℃. The whole-plant carbon balance, calculated based on photosynthetic parameters, respiration rates, and biomass, exhibited distinct seasonal variation, increasing during winter and spring and decreasing during summer and fall, which is consistent with the highest in situ growth in spring and severely limited growth at the highest water temperature conditions. Phyllospadix iwatensis displayed a negative carbon balance during late summer, fall, and winter, but demonstrated a positive carbon balance during spring and early summer. Our findings suggest that the rising seawater temperatures associated with climate change may lead to significant alterations in the seagrass ecosystem functioning along the rocky shores of the Korean east coast.

A study on the change effect of emission regulation mode on vehicle emission gas (배기가스 규제 모드 변화가 차량 배기가스에 미치는 영향 연구)

  • Lee, Min-Ho;Kim, Ki-Ho;Lee, Joung-Min
    • Journal of the Korean Applied Science and Technology
    • /
    • v.35 no.4
    • /
    • pp.1108-1119
    • /
    • 2018
  • As the interest on the air pollution is gradually rising at home and abroad, automotive and fuel researchers have been studied on the exhaust and greenhouse gas emission reduction from vehicles through a lot of approaches, which consist of new engine design, innovative after-treatment systems, using clean (eco-friendly alternative) fuels and fuel quality improvement. This research has brought forward two main issues : exhaust emissions (regulated and non-regulated emissions, PM particle matter) and greenhouse gases of vehicle. Exhaust emissions and greenhouse gases of automotive had many problem such as the cause of ambient pollution, health effects. In order to reduce these emissions, many countries are regulating new exhaust gas test modes. Worldwide harmonized light-duty vehicle test procedure (WLTP) for emission certification has been developed in WP.29 forum in UNECE since 2007. This test procedure was applied to domestic light duty diesel vehicles at the same time as Europe. The air pollutant emissions from light-duty vehicles are regulated by the weight per distance, which the driving cycles can affect the results. Exhaust emissions of vehicle varies substantially based on climate conditions, and driving habits. Extreme outside temperatures tend to increasing the emissions, because more fuel must be used to heat or cool the cabin. Also, high driving speeds increases the emissions because of the energy required to overcome increased drag. Compared with gradual vehicle acceleration, rapid vehicle acceleration increases the emissions. Additional devices (air-conditioner and heater) and road inclines also increases the emissions. In this study, three light-duty vehicles were tested with WLTP, NEDC, and FTP-75, which are used to regulate the emissions of light-duty vehicles, and how much emissions can be affected by different driving cycles. The emissions gas have not shown statistically meaningful difference. The maximum emission gas have been found in low speed phase of WLTP which is mainly caused by cooled engine conditions. The amount of emission gas in cooled engine condition is much different as test vehicles. It means different technical solution requires in this aspect to cope with WLTP driving cycle.

Smart Electric Mobility Operating System Integrated with Off-Grid Solar Power Plants in Tanzania: Vision and Trial Run (탄자니아의 태양광 발전소와 통합된 전기 모빌리티 운영 시스템 : 비전과 시범운행)

  • Rhee, Hyop-Seung;Im, Hyuck-Soon;Manongi, Frank Andrew;Shin, Young-In;Song, Ho-Won;Jung, Woo-Kyun;Ahn, Sung-Hoon
    • Journal of Appropriate Technology
    • /
    • v.7 no.2
    • /
    • pp.127-135
    • /
    • 2021
  • To respond to the threat of global warming, countries around the world are promoting the spread of renewable energy and reduction of carbon emissions. In accordance with the United Nation's Sustainable Development Goal to combat climate change and its impacts, global automakers are pushing for a full transition to electric vehicles within the next 10 years. Electric vehicles can be a useful means for reducing carbon emissions, but in order to reduce carbon generated in the stage of producing electricity for charging, a power generation system using eco-friendly renewable energy is required. In this study, we propose a smart electric mobility operating system integrated with off-grid solar power plants established in Tanzania, Africa. By applying smart monitoring and communication functions based on Arduino-based computing devices, information such as remaining battery capacity, battery status, location, speed, altitude, and road conditions of an electric vehicle or electric motorcycle is monitored. In addition, we present a scenario that communicates with the surrounding independent solar power plant infrastructure to predict the drivable distance and optimize the charging schedule and route to the destination. The feasibility of the proposed system was verified through test runs of electric motorcycles. In considering local environmental characteristics in Tanzania for the operation of the electric mobility system, factors such as eco-friendliness, economic feasibility, ease of operation, and compatibility should be weighed. The smart electric mobility operating system proposed in this study can be an important basis for implementing the SDGs' climate change response.

A study on the emission characteristics of greenhouse gases according to the vehicle technology, fuel oil type and test mode (차량기술, 연료 유종 및 시험모드 특성에 따른 온실가스의 배출특성 연구)

  • Lee, Jung-Cheon;Lee, Min-Ho;Kim, Ki-Ho;Park, An-Young
    • Journal of the Korean Applied Science and Technology
    • /
    • v.34 no.4
    • /
    • pp.962-973
    • /
    • 2017
  • Concerns about an air pollution are gradually increasing at home and abroad. The automotive and fuel researchers are trying to reduce emissions and greenhouse gases of vehicles through a research on new engine designs and innovative after-treatment systems using clean fuels (eco-alternative fuel) and fuel quality improvements. In this paper, we stduy the emission characteristics of greenhouse gases on seven vehicles using gasoline, diesel, and LPG by legal test mode in domestic and abroad.(Urban mode, Highway mode, rapidly acceleration and deceleration, using air conditioner, low temperature condition) Regardless of fuels, most of the greenhouse gases tend to show the worst results in cold FTP-75 mode. In the case of A vehicles (2.0 MPI) and B vehicles (2.4 GDI) using a gasoline fuel, the factors that increase greenhouse gases are in order of a rapidly acceleration and deceleration, using air conditioner, low temperature condition. But G vehicles(LPLi) have different emission characteristics from another vehicles. In the case of A vehicles (2.0 w/o DPF) and B vehicles (2.2 with DPF) using a diesel fuel, the factors that increase greenhouse gases are in order of a rapidly acceleration and deceleration, using air conditioner, low temperature condition. However, the factor of F vehicles are in order of low temperature condition, using air conditioner, rapidly acceleration and deceleration. In conclusion, it will be an effective method to apply different technologies of emission reduction for each fuel.

Global Rice Production, Consumption and Trade: Trends and Future Directions

  • Bhandari, Humnath
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2019.09a
    • /
    • pp.5-5
    • /
    • 2019
  • The objectives of this paper are (i) to analyze past trends and future directions of rice production, consumption and trade across the world and (ii) to discuss emerging challenges and future directions in the global rice industry. Rice is a staple food of over half of the world's 7.7 billion people. It is an important economic, social, political, and cultural commodity in most Asian countries. Rice is the $1^{st}$ most widely consumed, $2^{nd}$ largely produced, and $3^{rd}$ most widely grown food crop in the world. It was cultivated by 144 million farms in over 100 countries with harvested area of over 163 million ha producing about 745 million tons paddy in 2018. About 90% of the total rice is produced in Asia. China and India, the biggest rice producers, account for over half of the world's rice production. Between 1960 and 2018, world rice production increased over threefold from 221 to 745 million tons (2.1% per year) due to area expansion from 120 to 163 million ha (0.5% per year) and paddy yield increase from 1.8 to 4.6 t/ha (1.6% per year). The Green Revolution led massive increase in rice production prevented famines, provided food for millions of people, reduced poverty and hunger, and improved livelihoods of millions of Asians. The future increase in rice production must come from yield increase as the scope for area expansion is limited. Rice is the most widely consumed food crop. The world's average per capita milled rice consumption is 64 kilograms providing 19% of daily calories. Asia accounted for 84% of global consumption followed by Africa (7%), South America (3%), and the Middle East (2%). Asia's per capita rice consumption is 100 kilograms per year providing 28% of daily calories. The global and Asian per capita consumption increased from the 1960s to the 1990s but stable afterward. The per capita rice consumption is expected to decline in Asia but increase outside Asia especially in Africa in the future. The total milled rice consumption was about 490 million tons in 2018 and projected to reach 550 million tons by 2030 and 590 million tons by 2040. Rice is thinly traded in international market because it is a highly protected commodity. Only about 9% of the total production is traded in global rice market. However, the volume of global rice trade has increased over six-fold from 7.5 to 46.5 million tons between the 1960s and 2018. A relatively small number of exporting countries interact with a large number of importing countries. The top five rice exporting countries are India, Thailand, Vietnam, Pakistan, and China accounting for 74% of the global rice export. The top five rice importing countries are China, Philippines, Nigeria, European Union and Saudi Arabia accounting for 26% of the global rice import. Within rice varieties, Japonica rice accounts for the highest share of the global rice trade (about 12%) followed by Basmati rice (about 10%). The high concentration of exports to a few countries makes international rice market vulnerable to supply disruptions in exporting countries, leading to higher world prices of rice. The export price of Thai 5% broken rice increased from 198 US$/ton in 2000 to 421 US$/ton in 2018. The volumes of trade and rice prices in the global market are expected to increase in the future. The major future challenges of the rice industry are increasing demand due to population growth, rising demand in Africa, economic growth and diet diversification, competition for natural resources (land and water), labor scarcity, climate change and natural hazards, poverty and inequality, hunger and malnutrition, urbanization, low income in rice farming, yield saturation, aging of farmers, feminization of agriculture, health and environmental concerns, improving value chains, and shifting donor priorities away from agriculture. At the same time, new opportunities are available due to access to new technologies, increased investment by the private sector, and increased global partnership. More investment in rice research and development is needed to develop and disseminate innovative technologies and practices to overcome problems and ensure food and nutrition security of the future population.

  • PDF

Implications of Shared Growth of Public Enterprises: Korea Hydro & Nuclear Power Case (공공기관의 동반성장 현황과 시사점: 한국수력원자력(주) 사례를 중심으로)

  • Jeon, Young-tae;Hwang, Seung-ho;Kim, Young-woo
    • Journal of Venture Innovation
    • /
    • v.4 no.2
    • /
    • pp.57-75
    • /
    • 2021
  • KHNP's shared growth activities are based on such public good. Reflecting the characteristics of a comprehensive energy company, a high-tech plant company, and a leading company for shared growth, it presents strategies to link performance indicators with its partners and implements various measures. Key tasks include maintaining the nuclear power plant ecosystem, improving management conditions for partner companies, strengthening future capabilities of the nuclear power plant industry, and supporting a virtuous cycle of regional development. This is made by reflecting the specificity of nuclear power generation as much as possible, and is designed to reflect the spirit of shared growth through win-win and cooperation in order to solve the challenges of the times while considering the characteristics as much as possible as possible. KHNP's shared growth activities can be said to be the practice of the spirit of the times(Zeitgeist). The spirit of the times given to us now is that companies should strive for sustainable growth as social air. KHNP has been striving to establish a creative and leading shared growth ecosystem. In particular, considering the positions of partners, it has been promoting continuous system improvement to establish a fair trade culture and deregulation. In addition, it has continuously discovered and implemented new customized support projects that are effective for partner companies and local communities. To this end, efforts have been made for shared growth through organic collaboration with partners and stakeholders. As detailed tasks, it also presents fostering new markets and new industries, maintaining supply chains, and emergency support for COVID-19 to maintain the nuclear power plant ecosystem. This reflects the social public good after the recent COVID-19 incident. In order to improve the management conditions of partner companies, productivity improvement, human resources enhancement, and customized funding are being implemented as detailed tasks. This is a plan to practice win-win growth with partner companies emphasized by corporate social responsibility (CSR) and ISO 26000 while being faithful to the main job. Until now, ESG management has focused on the environmental field to cope with the catastrophe of climate change. According to KHNP is presenting a public enterprise-type model in the environmental field. In order to strengthen the future capabilities of the nuclear power plant industry as a state-of-the-art energy company, it has set tasks to attract investment from partner companies, localization and new technologies R&D, and commercialization of innovative technologies. This is an effort to develop advanced nuclear power plant technology as a concrete practical measure of eco-friendly development. Meanwhile, the EU is preparing a social taxonomy to focus on the social sector, another important axis in ESG management, following the Green Taxonomy, a classification system in the environmental sector. KHNP includes enhancing local vitality, increasing income for the underprivileged, and overcoming the COVID-19 crisis as part of its shared growth activities, which is a representative social taxonomy field. The draft social taxonomy being promoted by the EU was announced in July, and the contents promoted by KHNP are consistent with this, leading the practice of social taxonomy