• Title/Summary/Keyword: inner displacement

Search Result 199, Processing Time 0.023 seconds

An Analysis on Volumetric Displacement of Gerotor Pump/Motor Using Vane Length (회전날개 길이를 이용한 제로터 펌프/모터의 배제용적에 관한 연구)

  • Kim, S.D.;Kim, D.M.;Ham, Y.B.;Han, C.H.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.8 no.2
    • /
    • pp.8-16
    • /
    • 2011
  • It is hard and complicated to analytically derive the volumetric-displacement formula of a gerotor pump/motor. Analytical formulas for calculating the volumetric-displacement are derived in this work, which is relatively easy and based upon vane lengths. The vane lengths mean the distances from axis of inner rotor or outer rotor to contact points between inner and outer rotors. Two kinds of formula were studied for two different kinematic motions of rotors. The first one is the case that outer rotor is fixed in space and inner rotor is in mixed motion of planetary revolution and rotation with respect to the spinning axis. And the second is the case that both inner and outer rotors simultaneously rotate. The proposed formula is verified through comparison with volumetric-displacement obtained from numerical CAD calculation.

An Analysis on Volumetric Displacement of Hydraulic Gerotor Pump/Motor using Energy and Torque Equilibrium - First Report: Case of Rotation of Inner and outer Rotors - (에너지보존과 토크평형을 이용한 제로터 유압 펌프/모터의 배제용적 해석 - 내·외부로터 회전 경우 -)

  • Kim, S.D.;Kim, D.M.;Ham, Y.B.
    • Journal of Drive and Control
    • /
    • v.10 no.2
    • /
    • pp.13-22
    • /
    • 2013
  • It is difficult to analytically derive a volumetric displacement formula of gerotor hydraulic pump/motor because geometric shape of rotors is complicated. An analytical method about the volumetric displacement is proposed in this work, which is relatively easy and based upon two physical concepts. The first one is energy conservation between hydraulic energy of the pump/motor and mechanical input/output energy. The second concept is torque equilibrium with respect to inner and outer rotors. The formula about the volumetric displacement is derived for the common case of inner and outer rotors rotate with respect to fixed axes. The formula is verified by comparing another analytical displacement formula, and it is numerically verified by comparing numerical results, which is calculated for geometric specification of a motor. The numerical displacement is calculated through CAD software program and MATLAB program. The proposed analytical formula can be utilized in analysis and design of hydraulic gerotor motors.

Personal Identification Using Inner Face of Fingers from Contactless Hand Image (비접촉 손 영상에서 손가락 면을 이용한 개인 식별)

  • Kim, Min-Ki
    • Journal of Korea Multimedia Society
    • /
    • v.17 no.8
    • /
    • pp.937-945
    • /
    • 2014
  • Multi-modal biometric system can use another biometric trait in the case of having deficiency at a biometric trait. It also has an advantage of improving the performance of personal identification by using multiple biometric traits, so studies on new biometric traits have continuously been performed. The inner face of finger is a relatively new biometric trait. It has two major features of knuckle lines and wrinkles, which can be used as discriminative features. This paper proposes a finger identification method based on displacement vector to effectively process some variation appeared in contactless hand image. At first, the proposed method produces displacement vectors, which are made by connecting corresponding points acquired by matching each pair of local block. It then recognize finger by measuring the similarity among all the detected displacement vectors. The experimental results using pubic CASIA hand image database show that the proposed method may be effectively applied to personal identification.

An Analysis on Volumetric Displacement of Gerotor Hydraulic Motor using Energy Conservation and Torque Equilibrium - Second Report: The Case of a Revolving and Rotating Inner Rotor - (에너지보존과 토크평형을 이용한 제로터 유압모터의 배제용적 해석 - 내부로터 공·자전 경우 -)

  • Kim, S.D.;Kim, D.M.;Ham, Y.B.
    • Journal of Drive and Control
    • /
    • v.11 no.4
    • /
    • pp.15-24
    • /
    • 2014
  • It is difficult to analytically derive a volumetric displacement formula for a gerotor hydraulic motor due to the complexity of the geometric shape of its gear lobes. This work proposes an analytical method for the volumetric displacement, a relatively easy method based upon two physical concepts: conservation between hydraulic energy and mechanical shaft energy, and torque equilibrium for the rotor's motion. The first research using these concepts was conducted on inner and outer rotors rotating with respect to each rotor axis. This work represents the second report conducted on an inner rotor revolving as a planetary motion on the stationary outer rotor. The formula equations regarding the volumetric displacement and flow rate are derived, and the proposed formula about the volumetric displacement is proven to be the same as another analytical displacement formula: the so-called vane length method. From the formula, volumetric displacement is calculated for an example geometry of the gear lobes. The resultant displacement is confirmed to be the same as the value calculated from the chamber volume method. The proposed analytical formula can be utilized in the analysis and design of gerotor hydraulic motors. Because it is based on torque equilibrium, this formula can provide a better understanding of torque performance, such as torque ripple, in designing a gerotor type motor.

Experimental Studies of the Explosion Characteristics by Varying Concentrations of a Multi Layered Water Gel Barrier (다층구조 Water Gel Barrier의 농도변화에 따른 폭발특성에 대한 실험적 연구)

  • Ha, Dae Il;Park, Dal Jae
    • Journal of the Korean Society of Safety
    • /
    • v.34 no.1
    • /
    • pp.40-44
    • /
    • 2019
  • Experimental studies have been carried out to investigate characteristics of gas explosion using a multi layered water gel barrier in a vented explosion chamber. The chamber is consisted of 1600 mm in length, with a square cross-section of $100{\times}100mm^2$. The gel concentration of inner layer of MLWGB ranged from 10% to 90% with intervals of 10% by weight of gel. Displacement of the MLWGB was photographed with a measured using a high-speed video camera, and pressure development was measured using a data acquisition system. It was found that MLWGBs with 10 ~ 20% inner layer concentrations were ruptured during the explosions. As the concentrations of inner layer increased from 30% to 90%, the barriers were not ruptured. As the gel concentrations of the inner layer increased, the displacement increased toward the chamber exit and the pressure decreased for the ruptured barriers. It was found that the pressure attenuation obtained from the MLWGB was higher than that of the single water gel barrier. For the cases of non-ruptured barriers, the pressure inside the chamber less increased with increasing gel concentrations of the inner layer. It was also found that the displacement moved back into the chamber for non-ruptured MLWGBs, and it was sensitive to the gel concentrations.

Variation of Impact Characteristics of ISB Panels with a Pyramidal Inner Structure According to Joining Technologies (피라미드형 내부구조체를 가진 ISB 판넬의 접합형태에 따른 충격 특성 변화)

  • Ahn, Dong-Gyu;Moon, Gyung-Jae;Jung, Chang-Gyun;Yang, Dong-Yol
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.9
    • /
    • pp.110-118
    • /
    • 2007
  • ISB (Inner structured and bonded) panel with a pyramidal inner structure is actively developing to reduce the weight and to improve the crashworthiness of the material. The objective of this paper is to investigate into the variation of impact characteristics of ISB panels with a pyramidal inner structure according to joining types between skin sheets and inner structures. Several drop impact tests have been performed. In order to examine the impact characteristics at a drawing condition, drawing type of experimental set-up has been proposed. From the results of the experiments, the influence of joining types between skin sheets and the inner structures on the characteristics of the deformation, the energy absorption and the failure has been quantitatively examined. In addition, it has been shown that maximum load decreased and the maximum displacement increases as the joining type changes from the bonding to the welding. The results of the observation of the specimen have been shown that major wrinkles form in the minor crimping direction irrespective of the joining types. Through the comparison of the experimental results for bonding and welding specimens, it has been shown that the absorption energy of the bonded specimen is nearly 1.3-1.5 times of the welded specimen at the same displacement.

Stress Analysis of Abutment and Supporting Tissues by Changing Angles and Heights of Konus Telescope Inner Crown (Konus Telescopic Denture의 내관 각도 및 높이에 따른 지대치 및 지지조직의 응력 분석)

  • Vang, Mong-Sook;Gettleman, Lawrence
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.19 no.3
    • /
    • pp.139-151
    • /
    • 2003
  • This study was to evaluate and to compare the compressive strength and the displacement effecting the abutment or the residual ridge which are transformed by the angle and the heights of the konus denture inner crown when restorating the unilateral konus denture by using the mandibular canine and the 1st premolar as an abutment. The author made 9 different models for different inner crown heights and konus angles. The inner crown height were divided to 5mm, 6mm, and 7mm and konus angles was divided to $4^{\circ}$, $6^{\circ}$, and $8^{\circ}$. And then in each model, 5kg of $15^{\circ}$ mesial load was stressed on the central fossa of the 1st premolar and the 1st molar. The stresses and displacement were measured using the finite element analysis. The results were as follows 1. The maximum compressive strength was shown on the connective area of the abutment and the denture base. 2. As the angle of the inner crown becomes increased, the compressive strength was shown smaller. 3. As the height of the inner crown becomes increased, the maximum compressive strength was shown smaller while the compressive strength of the root apex and the residual ridge showed larger. 4. When the stress was loaded only on the 1st premolar, the more compressive strength was concentrated on the root apex area of the 1st premolar. 5. When the stress was loaded only on the 1st premolar, the compressive strength was concentrated uniformly on the abutment and the residual ridge. 6. When the stress was loaded only on the 1st molar, the maximum displacement was shown on the distal part of the residual ridge.

Finite Element Analysis on the Displacement Behavior Safety of Hollow Shafts with Equivalent Volume (동등체적을 갖는 중공축의 변위거동 안전성에 관한 유한요소해석)

  • Kim, Chung Kyun
    • Journal of the Korean Institute of Gas
    • /
    • v.20 no.3
    • /
    • pp.73-77
    • /
    • 2016
  • This paper presents the displacement behavior safety of hollow shafts with an equivalent volume for various cross sectional area using a finite element method. The FEM results indicate that the hollow shafts with X-type or Y-type columns between outer tube, middle tube and inner tube may reduce a maximum displacement at the middle length of hollow shafts. Especially, the load-bearing column of X-type or Y-type hollow shaft is directly connected between outer tube and inner tube without a shift for reducing the vertical displacement. And increased thickness of a load-bearing column is recommended for reducing the vertical displacement and increasing the displacement behavior safety for an equivalent volume of a hollow shaft.

A Finite-element Method of a Multilayer Piezoelectric Body for an Actuator Depending on Inner Electrode Pattern (내부전극패턴 변경에 따른 적층형 압전 액추에이터의 유한요소해석)

  • Lee, Hyeung-Gyu;Kang, Hyung-Won
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.12
    • /
    • pp.1124-1128
    • /
    • 2005
  • New piezoelectric actuator design, which can reduce the number of the stacking layer without lowering the piezoelectric displacement, is suggested in this work. Each layer of the new designed multilayer actuator has the same electrode pattern as the cross-sectioned layer of the existing multilayer actuator has. The piezoelectric displacement was calculated by Finite-Element Method (FEM) analysis. The maximum piezoelectric displacement of the new-designed actuator with 13 layers was calculated to be almost same value (55.9 ${\mu}m$) as that of the existing actuator with 25 layers(60.1 ${\mu}m$).

A Study on the Integrated Control and Safety Management System for 9% Ni Steel LNG Storage Tank (9% 니켈강재식 LNG 저장탱크용 통합제어안전관리시스템에 관한 연구)

  • Kim, Chung-Kyun
    • Journal of the Korean Institute of Gas
    • /
    • v.14 no.5
    • /
    • pp.13-18
    • /
    • 2010
  • This paper presents the development of an integrated control and safety management system for 9% nickel steel LNG storage tank. The new system added the measuring equipment of pressure, displacement and force compared to the conventional measurement and control system. The measured data has simultaneously been processed by integrating and analyzing with new control equipments and safety management systems. The integrated control and safety management system, which may increase a safety and efficiency of a super-large full containment LNG storage tank, added additional pressure gauges and new displacement/force sensors at the outer side wall and a welding zone of a stiffener and top girder of an inner tank, and the inner side wall of a corner protection tank. The displacement and force sensors may provide failure clues of 9% nickel steel structures such as an inner tank and a corner protection, and a LNG leakage from the inner tank. The conventional leak sensor may not provide proper information on 9% nickel steel tank fracture even though LNG is leaked until the leak detector, which is placed at the insulation area between an inner tank and a corner protection tank, sends a warning signal. Thus, the new integrated control and safety management system is to collect and analyze the temperature, pressure, displacement, force, and LNG density, which are related to the tank system safety and leakage control from the inner tank. The digital data are also measured from control systems such as displacement and force of 9% nickel steel tank safety, LNG level and density, cool-down process, leakage, and pressure controls.