• Title/Summary/Keyword: injection temperature

Search Result 1,929, Processing Time 0.027 seconds

Geomechanical Stability of Underground Lined Rock Caverns (LRC) for Compressed Air Energy Storage (CAES) using Coupled Thermal-Hydraulic-Mechanical Analysis (열-수리-역학적 연계해석을 이용한 복공식 지하 압축공기에너지 저장공동의 역학적 안정성 평가)

  • Kim, Hyung-Mok;Rutqvist, Jonny;Ryu, Dong-Woo;Synn, Joong-Ho;Song, Won-Kyong
    • Tunnel and Underground Space
    • /
    • v.21 no.5
    • /
    • pp.394-405
    • /
    • 2011
  • In this paper, we applied coupled non-isothermal, multiphase fluid flow and geomechanical numerical modeling using TOUGH-FLAC coupled analysis to study the complex thermodynamic and geomechanical performance of underground lined rock caverns (LRC) for compressed air energy storage (CAES). Mechanical stress in concrete linings as well as pressure and temperature within a storage cavern were examined during initial and long-term operation of the storage cavern for CAES. Our geomechanical analysis showed that effective stresses could decrease due to air penetration pressure, and tangential tensile stress could develop in the linings as a result of the air pressure exerted on the inner surface of the lining, which would result in tensile fracturing. According to the simulation in which the tensile tangential stresses resulted in radial cracks, increment of linings' permeability and air leakage though the linings, tensile fracturing occurred at the top and at the side wall of the cavern, and the permeability could increase to $5.0{\times}10^{-13}m^2$ from initially prescribed $10{\times}10^{-20}m^2$. However, this air leakage was minor (about 0.02% of the daily air injection rate) and did not significantly impact the overall storage pressure that was kept constant thanks to sufficiently air tight surrounding rocks, which supports the validity of the concrete-lined underground caverns for CAES.

Comparison of virulence by Acanthamoeba strains in a murine model of acquired immunodeficiency syndrome (면역결핍 마우스를 이용한 Acnnthamoeba 분리주별 병원성 평가)

  • Gong, Hyeon-Hui;Lee, Seong-Tae;Jeong, Dong-Il
    • Parasites, Hosts and Diseases
    • /
    • v.36 no.1
    • /
    • pp.23-32
    • /
    • 1998
  • The pathogenic potential of Acnnthamoebc strains was evaluated by experimental infection of murine AIDS (MAIDS) model. C57BL/6 mice were induced to immunocompromized state by intraperitoneal injection of LP-BM5 MuLV and revealed the typical splenomegalty and Iymphatic enlargement of axillar and inguinal regios on necropsy 4 weeks after viral infection. Although there was no significant difference in the mortality rate of MAIDS mouse according to the culture temperature, it was very different in the mortality rate from strain to strain of Accnthnmoebc. A. henIHi OC-3A strain isolated from the brain of a GAE patient showed !he highest mortality rate and A. culbertsoni A-1 strain from tissue culture was the second. KA/S3 and KA/S2 strains isolated from soil revealed very low virulence. The mice infected by intranasal inoculation of Acanthnmoebc showed relatively chronic course than intravenous inoculation. The gross findings of lungs and brains from infected mice were variable among mice. On the microscopic observations, the lungs showed much more severe inflammation and necrosis than the brains microscopically. This MAIDS model would be useful to study the opportunistic protozoan infections of AIDS patients. In the light of these results. the pathogenic potential and the virulence of Acnnthamoebo may be determined genetically.

  • PDF

Studies on the changes in Nucleotides and their related compound of Yellow corvenia (Pseudosciaena manchurica) during Gulbi processing (굴비제조중 핵산관련물질의 변화에 관한 연구)

  • Na, An-Hee;Shin, Mal-Shick;Jhon, Doek-Young;Hong, Youn-Ho
    • Korean journal of food and cookery science
    • /
    • v.2 no.2
    • /
    • pp.1-7
    • /
    • 1986
  • Gulbi were made by salting Yellow corvenia (Pseudosciaena manchurica) with the in three ways: the dry salting method with bay salt, the dry salting method with purified salt or with the abdominal brine injection method with purifie salt. The half of the sample was dried by the control system of temperature and humidity: the other part was dried by the natural condition. In fresh muscle, the content of IMP, hypoxanthine, inosine and AMP were $13.40,\;9.28,\;3.01{\mu}mole/g$ and trace amount, dry basis, respectively. In fresh egg, the content of AMP, hypoxanthine, inosine and IMP were 13.98, 6.56, 1.98 and $1.93{\mu}mole/g$, dry basis, respectively. During the drying process of Yellow corvenia, the content of hypoxanthine increased remarkably, while the content of AMP, IMP and inosine decreased ana remained as trace amount. It can be suggested that the characteristic flavor of Gulbi is not attributed to the nucleotides and their related compounds but rather to free amino acids.

  • PDF

Studies on Increase of Timber Strength with Electric Osmosis of Resin (수지(樹脂)의 전기삼투(電氣滲透)에 의(依)한 목재강도(木材强度) 증대(增大)에 관(關)한 연구(硏究))

  • Park, Young Kwan;Kim, Kap Duk
    • Journal of Korean Society of Forest Science
    • /
    • v.12 no.1
    • /
    • pp.23-29
    • /
    • 1971
  • In order to see a possible strengthening of much injection of synthetic resin into timber by way of electric osmosis, Authors examined the change of the bending strength of the sample timber piece after being injected. 1. Three kinds of sample tree species, Pinus rigida, Magnolia and Populus were used and the size of the sample timber pieces was $30mm{\times}30mm{\times}330mm$. 2. Each of the electric osmosis was made with 250V of D. C. voltage and $0.01A/cm^2$ of the current for 2 hours and the experimenter hardened the injected resin by putting the sample in an oven of $120^{\circ}{\pm}2^{\circ}C$ temperature for 24 hours. 3. The size of the test sample piece for bending strength measurement was $20mm{\times}20mm{\times}320mm$ and Amsler type universal timber test machine was used for the measurement. 4. The strength difference between treated and untreated samples was as follows. Pinus rigida high sig. Magnolia None Sig. Populus Sig.

  • PDF

Influence of Charging Condition of Al-dross on Maximum Concentration of Al in Molten Steel : Fundamental study for improvement of chemical energy in EAF process (용강 중 Al 최대 농도에 대한 Al 드로스 장입 조건의 영향: 전기로 공정 내 화학 에너지 향상을 위한 기반 연구)

  • Kim, Gyu-Wan;Kim, Sun-Joong
    • Resources Recycling
    • /
    • v.28 no.4
    • /
    • pp.44-50
    • /
    • 2019
  • In the electric arc furnace process, the chemical energy such as the heat of oxidation reaction and the heat of carbon combustion etc. is consumed as 30% of the total input energy. In order to reduce $CO_2$ emission in EAF, it is necessary to decrease the use of electric power energy during scrap melting stage and increase the use of chemical energy. In general, when the carbon materials is individually charged into the molten steel, the carbon materials floated to the slag layer due to low density before it is dissolved in molten steel. When the concentration of carbon in the molten steel is high, the combustion energy of carbon by oxygen injection can lower the electric power energy and improve the chemical energy consumption. Therefore, an efficient charging methods of carbon material is required to increase the efficiency of carbon combustion heat. On the other hand, Al-dross, which is known as a by-product after Al smelting, includes over 25 mass% of metallic Al, and the oxidation heats of Al is lager than that of carbon. However, the recycling ratio fo Al-dross was very low and is almost landfilled. In order to effectively utilize the heats of oxidation of Al in Al-dross, it is necessary to study the application of Al-dross in the steel process. In this study, the dissolution efficiency of carbon and aluminum in molten steel was investigated by varying the reaction temperature and the mixing ratios of coke and Al-dross.

Removal of residual VOCs in a collection chamber using decompression for analysis of large volatile sample

  • Lee, In-Ho;Byun, Chang Kyu;Eum, Chul Hun;Kim, Taewook;Lee, Sam-Keun
    • Analytical Science and Technology
    • /
    • v.34 no.1
    • /
    • pp.23-35
    • /
    • 2021
  • In order to measure the volatile organic compounds (VOCs) of a sample which is too large to use commercially available chamber, a stainless steel vacuum chamber (VC) (with an internal diameter of 205 mm and a height of 50 mm) was manufactured and the temperature of the chamber was controlled using an oven. After concentrating the volatiles of the sample in the chamber by helium gas, it was made possible to remove residual volatile substances present in the chamber under reduced pressure ((2 ± 1) × 10-2 mmHg). The chamber was connected to a purge & trap (P&T) using a 6 port valve to concentrate the VOCs, which were analyzed by gas chromatography-mass spectrometry (GC-MS) after thermal desorption (VC-P&T-GC-MS). Using toluene, the toluene recovery rate of this device was 85 ± 2 %, reproducibility was 5 ± 2 %, and the detection limit was 0.01 ng L-1. The method of removing VOCs remaining in the chamber with helium and the method of removing those with reduced pressure was compared using Korean drinking water regulation (KDWR) VOC Mix A (5 μL of 100 ㎍ mL-1) and butylated hydroxytoluene (BHT, 2 μL of 500 ㎍ mL-1). In case of using helium, which requires a large amount of gas and time, reduced pressure ((2 ± 1) × 10-2 mmHg) only during the GC-MS running time, could remove VOCs and BHT to less than 0.1 % of the original injection concentration. As a result of analyzing volatile substances using VC-P&T-GC-MS of six types of cell phone case, BHT was detected in four types and quantitatively analyzed. Maintaining the chamber at reduced pressure during the GC-MS analysis time eliminated memory effect and did not affect the next sample analysis. The volatile substances in a cell phone case were also analyzed by dynamic headspace (HT3) and GC-MS, and the results of the analysis were compared with those of VC-P&T-GC-MS. Considering the chamber volume and sample weight, the VC-P&T configuration was able to collect volatile substances more efficiently than the HT3. The VC-P&T-GC-MS system is believed to be useful for VOCs measurement of inhomogeneous large sample or devices used inside clean rooms.

Enhancement of combustion efficiency of a air-cooled combustor system with single F.D. Fan Using CFD (전산유체역학을 이용한 단일 송풍기가 적용된 공냉식 연소설비의 효율개선)

  • Kim, Min-Choul;Shon, Byung-Hyun;Lee, Jae-Jeong;Park, Hung-Suck
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.6
    • /
    • pp.460-468
    • /
    • 2021
  • This study investigated the enhanced combustion efficiency of an "air-cooled combustion system" with single F.D. fan, and performed a numerical analysis for the operation and design conditions to increase the combustion efficiency. The combustion efficiency in an actual combustor was compared before and after the structure modification. Numerical analysis for application of a single fan revealed the difficulty of forming a turbulence for circular combustion conditions. This is because the supply ratio of combustion air supplied into 2 flow paths becomes irregular in the combustion furnace due to a change in friction force and pressure in each flow path. Subsequently, two methods of supplying air into the combustion furnace were analyzed numerically to obtain the optimal combustion conditions of an air-cooled combustion system. The first method involved injecting the preheated combustion air after a 180~360 degree rotation from the outer wall, whereas in the second method, the combustion air was injected into the combustion furnace in a tangential direction after primary heat exchange outside the combustion furnace, by applying a rotatable vane structure in the combustion furnace. Results reveal that application of a single F.D. fan to the air injection into a rotatable combustion furnace is desirable for optimization of the combustion conditions for applying a duct structure having a dual cooling wall for the cooling of the outer wall of the combustion furnace, and for maintaining perfect mixing in the combustion furnace. We therefore confirmed enhanced combustion efficiency by comparing the actual combustion efficiency before and after structure modification.

Analysis of effect of hydrogen jet fire on tunnel structure (수소 제트화염이 터널 구조체에 미치는 영향 분석)

  • Park, Jinouk;Yoo, Yongho;Kim, Whiseong
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.23 no.6
    • /
    • pp.535-547
    • /
    • 2021
  • A policy to expand the hydrogen economy has been established in Korea and the supply of FCEV is being expanded to realize a hydrogen society. Therefore, the supply of FCEV is expected to increase rapidly, and a solution to respond to accidents of FCEV is required. In this study, an experimental study was conducted to analyze the effect of the hydrogen jet flame generated by a FCEV on the inner wall of the tunnel and the characteristics of the internal radiant heat. For the experiment, the initial pressure of hydrogen tank was set to 700 bar, and the injection nozzle diameter was set to 1.8 mm in order to make the same as the conditions generated in the FCEV. In addition, a tunnel fire resistance test specimen having the same strength as the compressive strength of concrete applied to general tunnels of 40 MPa was manufactured and used in the experiment. The results were analyzed for the separation distance (2 m and 4 m) between the hydrogen release nozzle and the tunnel fire resistance test concrete. As the result, the maximum internal temperature of the test concrete was measured to 1,349.9℃ (2 m separation distance), and the radiant heat around the jet flame was up to 39.16 kW/m2.

A Study on Increased Properties of Cellulose-Based Biodegradable Polymer Composites (셀룰로오스 기반 생분해성 고분자 복합재의 물성 증가에 관한 연구)

  • Sangjun Hong;Ajeong Lee;Sanghyeon Ju;Youngeun Shin;Teahoon Park
    • Composites Research
    • /
    • v.36 no.2
    • /
    • pp.126-131
    • /
    • 2023
  • Growing environmental concerns regarding pollution caused by conventional plastics have increased interest in biodegradable polymers as alternative materials. The purpose of this study is to develop a 100% biodegradable nanocomposite material by introducing organic nucleating agents into the biodegradable and thermoplastic resin, poly(lactic acid), to improve its properties. Accordingly, cellulose nanofibers, an eco-friendly material, were adopted as a substitute for inorganic nucleating agents. To achieve a uniform dispersion of cellulose nanofibers (CNFs) within PLA, the aqueous solution of nanofibers was lyophilized to maintain their fibrous shape. Then, they were subjected to primary mixing using a twin-screw extruder. Test specimens with double mixing were then produced by injection molding. Differential scanning calorimetry was employed to confirm the reinforced physical properties, and it was found that the addition of 1 wt% CNFs acted as a reinforcing material and nucleating agent, reducing the cold crystallization temperature by approximately 14℃ and increasing the degree of crystallization. This study provides an environmentally friendly alternative for developing plastic materials with enhanced properties, which can contribute to a sustainable future without consuming inorganic nucleating agents. It serves as a basis for developing 100% biodegradable green nanocomposites.

Nanoconfinement of Hydrogen and Carbon Dioxide in Palygorskite (팔리고스카이트 내 수소 및 이산화탄소 나노공간한정)

  • Juhyeok Kim;Kideok D. Kwon
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.36 no.4
    • /
    • pp.221-232
    • /
    • 2023
  • Carbon neutrality requires carbon dioxide reduction technology and alternative green energy sources. Palygorskite is a clay mineral with a ribbon structure and possess a large surface area due to the nanoscale pore size. The clay mineral has been proposed as a potential material to capture carbon dioxide (CO2) and possibly to store eco-friendly hydrogen gas (H2). We report our preliminary results of grand canonical Monte Carlo (GCMC) simulations that investigated the adsorption isotherms and mechanisms of CO2 and H2 into palygorskite nanopores at room temperature. As the chemical potential of gas increased, the adsorbed amount of CO2 or H2 within the palygorskite nanopores increased. Compared to CO2, injection of H2 into palygorskite required higher energy. The mean squared displacement within palygorskite nanopores was much higher for H2 than for CO2, which is consistent with experiments. Our simulations found that CO2 molecules were arranged in a row in the nanopores, while H2 molecules showed highly disordered arrangement. This simulation method is promising for finding Earth materials suitable for CO2 capture and H2 storage and also expected to contribute to fundamental understanding of fluid-mineral interactions in the geological underground.