DOI QR코드

DOI QR Code

Nanoconfinement of Hydrogen and Carbon Dioxide in Palygorskite

팔리고스카이트 내 수소 및 이산화탄소 나노공간한정

  • Juhyeok Kim (Department of Geology, Kangwon National University) ;
  • Kideok D. Kwon (Department of Geology, Kangwon National University)
  • 김주혁 (강원대학교 자연과학대학 지질학과) ;
  • 권기덕 (강원대학교 자연과학대학 지질학과)
  • Received : 2023.10.11
  • Accepted : 2023.11.14
  • Published : 2023.12.30

Abstract

Carbon neutrality requires carbon dioxide reduction technology and alternative green energy sources. Palygorskite is a clay mineral with a ribbon structure and possess a large surface area due to the nanoscale pore size. The clay mineral has been proposed as a potential material to capture carbon dioxide (CO2) and possibly to store eco-friendly hydrogen gas (H2). We report our preliminary results of grand canonical Monte Carlo (GCMC) simulations that investigated the adsorption isotherms and mechanisms of CO2 and H2 into palygorskite nanopores at room temperature. As the chemical potential of gas increased, the adsorbed amount of CO2 or H2 within the palygorskite nanopores increased. Compared to CO2, injection of H2 into palygorskite required higher energy. The mean squared displacement within palygorskite nanopores was much higher for H2 than for CO2, which is consistent with experiments. Our simulations found that CO2 molecules were arranged in a row in the nanopores, while H2 molecules showed highly disordered arrangement. This simulation method is promising for finding Earth materials suitable for CO2 capture and H2 storage and also expected to contribute to fundamental understanding of fluid-mineral interactions in the geological underground.

탄소중립을 위한 이산화탄소 저감 기술 및 대체 에너지에 대한 수요가 계속 증가하고 있다. 팔리고스카이트(palygorskite)는 리본 구조를 가지는 점토광물로 넓은 표면적의 나노크기의 공극을 가지고 있어, 지구온난화의 주범인 이산화탄소(CO2)를 포집하고 친환경 대체 에너지인 수소(H2)를 저장할 수 있는 물질로 제안된 바 있다. 이번 논문에서는 대정준 몬테 카를로(grand canonical Monte carlo) 시뮬레이션을 사용하여 팔리고스카이트 나노공극으로의 CO2 및 H2 분자의 흡착 등온선과 기작에 대한 기초연구의 예비 결과를 보고한다. 실온에서 기체의 분압 관련 변수인 화학 포텐셜(chemical potential)의 증가에 따라 나노공극에 흡착되는 CO2 및 H2 함량은 증가하였다. CO2와 비교하여, H2의 흡착은 더 높은 화학 포텐셜, 즉 높은 에너지가 필요하였다. 이론 계산으로 얻은 나노공극에서의 평균 제곱 변위(mean squared displacement)는 CO2 보다 H2가 훨씬 높았으며 기존 실험 결과와 일치했다. CO2는 나노공극에서 일렬로 배열된 반면, H2는 매우 불규칙한 배열을 보였다. 이번 연구 방법은 CO2 및 H2를 저장 가능한 지구물질 광물을 찾는 개발연구뿐만 아니라, 지중환경에서 유체와 광물의 반응을 근본적으로 이해하는 데 기여할 것으로 기대한다.

Keywords

Acknowledgement

이 논문은 2023년도 정부(교육부) 재원의 한국연구재단 기초연구사업(No.2019R1A6A1A03033167) 지원을 받아 수행되었다. 시뮬레이션을 도와준 김민정과 이현웅에게 감사드린다. 원고의 질적 향상을 위한 의견을 주신 익명의 심사자께도 감사드린다.

References

  1. Aceves, S.M., Petitpas, G., Espinosa-Loza, F., Matthews, M.J. and Ledesma-Orozco, E., 2013, Safe, long range, inexpensive and rapidly refuelable hydrogen vehicles with cryogenic pressure vessels. International Journal of Hydrogen Energy, 38, 2480-2489. https://doi.org/10.1016/j.ijhydene.2012.11.123
  2. Ahluwalia, R.K., Hua, T.Q., Peng, J.K., Lasher, S., McKenney, K., Sinha, J. and Gardiner, M., 2010, Technical assessment of cryo-compressed hydrogen storage tank systems for automotive applications. International Journal of Hydrogen Energy, 35, 4171-4184. https://doi.org/10.1016/j.ijhydene.2010.02.074
  3. Al-Mamoori, A., Krishnamurthy, A., Rownaghi, A.A. and Rezaei, F., 2017, Carbon capture and utilization update. Energy Technology, 5, 834-849. https://doi.org/10.1002/ente.201600747
  4. Ball M. and Wietschel M., 2009, The hydrogen economy: opportunities and challenges. Cambridge University Press, 672p.
  5. Berendsen, H.J.C., Grigera, J.R. and Straatsma, T.P., 1987, The missing term in effective pair potentials. The Journal of Physical Chemistry, 91, 6269-6271. https://doi.org/10.1021/j100308a038
  6. Berta, M., Dethlefsen, F., Ebert, M., Schafer, D. and Dahmke, A., 2018, Geochemical effects of millimolar hydrogen concentrations in groundwater: An experimental study in the context of subsurface hydrogen storage. Environmental science & technology, 52, 4937-4949. https://doi.org/10.1021/acs.est.7b05467
  7. Blomen, E., Hendriks, C. and Neele, F., 2009, Capture technologies: improvements and promising developments. Energy procedia, 1, 1505-1512. https://doi.org/10.1016/j.egypro.2009.01.197
  8. Cecilia, J.A., Vilarrasa-Garcia, E., Cavalcante Jr, C.L., Azevedo, D.C.S., Franco, F. and Rodriguez-Castellon, E., 2018, Evaluation of two fibrous clay minerals (sepiolite and palygorskite) for CO2 capture. Journal of Environmental Chemical Engineering, 6, 4573-4587. https://doi.org/10.1016/j.jece.2018.07.001
  9. Chen, S., Jia, B., Peng, Y., Luo, X., Huang, Y., Jin, B., Gao, H., Liang, Z., Hu, X. and Zhou, Y., 2021, CO2 adsorption behavior of 3-aminopropyltrimethoxysilane-functionalized attapulgite with the grafting modification method. Industrial & Engineering Chemistry Research, 60, 17150-17161. https://doi.org/10.1021/acs.iecr.1c03436
  10. Chiari, G., Giustetto, R. and Ricchiardi, G., 2003, Crystal structure refinements of palygorskite and Maya Blue from molecular modelling and powder synchrotron diffraction. European Journal of Mineralogy, 15, 21-33. https://doi.org/10.1127/0935-1221/2003/0015-0021
  11. Cuellar-Franca, R.M. and Azapagic, A., 2015, Carbon capture, storage and utilisation technologies: A critical analysis and comparison of their life cycle environmental impacts. Journal of CO2 Utilization, 9, 82-102. https://doi.org/10.1016/j.jcou.2014.12.001
  12. Cygan, R.T., Liang, J.J. and Kalinichev, A.G., 2004, Molecular models of hydroxide, oxyhydroxide, and clay phases and the development of a general force field. Journal of Physical Chemistry B, 108, 1255-1266. https://doi.org/10.1021/jp0363287
  13. Cygan, R.T., Romanov, V.N. and Myshakin E.M., 2012, Molecular Simulation of Carbon Dioxide Capture by Montmorillonite Using an Accurate and Flexible Force Field, Journal of Physical Chemistry C, 116, 24, 13079-13091. https://doi.org/10.1021/jp3007574
  14. Giustetto, R., Seenivasan, K., Pellerej, D., Ricchiardi, G. and Bordiga, S., 2012, Spectroscopic characterization and photo/thermal resistance of a hybrid palygorskite/methyl red Mayan pigment. Microporous and Mesoporous Materials, 155, 167-176. https://doi.org/10.1016/j.micromeso.2012.01.024
  15. Gomez-Pozuelo, G., Sanz-Perez, E.S., Arencibia, A., Pizarro, P., Sanz, R. and Serrano, D.P., 2019, CO2 adsorption on amine-functionalized clays. Microporous and Mesoporous Materials, 282, 38-47. https://doi.org/10.1016/j.micromeso.2019.03.012
  16. Halgren, T.A., 1992, The representation of van der Waals (vdW) interactions in molecular mechanics force fields: potential form, combination rules, and vdW parameters. Journal of the American Chemical Society, 114, 7827-7843. https://doi.org/10.1021/ja00046a032
  17. Han, Y., Liu, J., Huang, L., He, X. and Li, J., 2019, Predicting the phase diagram of solid carbon dioxide at high pressure from first principles. npj Quantum Materials, 4, 10.
  18. Hassanzadeh, A. and Sabzi, F., 2021, Prediction of CO2 and H2 solubility, diffusion, and permeability in MFI zeolite by molecular dynamics simulation. Structural Chemistry, 32, 1641-1650. https://doi.org/10.1007/s11224-021-01743-9
  19. Hoegh-Guldberg, O. and Bruno, J.F., 2010, The impact of climate change on the world's marine ecosystems, Science, 328, 1523-1528. https://doi.org/10.1126/science.1189930
  20. Iglauer, S., Abid, H., Al Yaseri, A. and Keshavarz, A., 2021, Hydrogen adsorption on sub-bituminous coal: Implications for hydrogen geo-storage. Geophysical Research Letters, 48, e2021GL092976.
  21. Kenarsari, S.D., Yang, D., Jiang, G., Zhang, S., Wang, J., Russell, A.G., Wei, Q. and Fan, M., 2013, Review of recent advances in carbon dioxide separation and capture. Rsc Advances, 3, 22739-22773. https://doi.org/10.1039/c3ra43965h
  22. Leachman, J.W., Jacobsen, R.T., Penoncello, S.G. and Lemmon, E.W., 2009, Fundamental equations of state for parahydrogen, normal hydrogen, and orthohydrogen. Journal of Physical and Chemical Reference Data, 38, 721-748. https://doi.org/10.1063/1.3160306
  23. Leung, D.Y., Caramanna, G. and Maroto-Valer, M.M., 2014, An overview of current status of carbon dioxide capture and storage technologies. Renewable and Sustainable Energy Reviews, 39, 426-443. https://doi.org/10.1016/j.rser.2014.07.093
  24. Mackie, A.D., Tavitian, B., Boutin, A. and Fuchs, A.H., 1997, Vapour-liquid phase equilibria predictions of methane-alkane mixtures by Monte Carlo simulation. Molecular Simulation, 19, 1-15. https://doi.org/10.1080/08927029708024135
  25. Merai, L., Rajkumar, T., Janovak, L., Sapi, A., Szenti, I., Nagy, L., Molnar, T., Biro, I., Sarosi, J., Kukovecz, A. and Konya, Z., 2020, Sulfur nanoparticles transform montmorillonite into an inorganic surfactant applicable in thermoplastics processing, Polymer Testing, 85, 106419.
  26. Naims, H., 2016, Economics of carbon dioxide capture and utilization-a supply and demand perspective. Environmental Science and Pollution Research, 23, 22226-22241. https://doi.org/10.1007/s11356-016-6810-2
  27. Pan, J., Li, R., Zhai, L., Zhang, Z., Ma, J. and Liu, H., 2019, Influence of palygorskite addition on biosolids composting process enhancement. Journal of Cleaner Production, 217, 371-379. https://doi.org/10.1016/j.jclepro.2019.01.227
  28. Parmesan, C., Morecroft, M.D. and Trisurat, Y., 2022, Climate change 2022: Impacts, adaptation and vulnerability (Doctoral dissertation, GIEC).
  29. Parry, M.L., 2007, Climate change 2007: impacts, adaptation and vulnerability: Working Group II Contribution to the Fourth Assessment Report of the IPCC, Cambridge University Press.
  30. Picaud, S. and Jedlovszky, P., 2014, Adsorption of H2O2 at the surface of Ih ice, as seen from grand canonical Monte Carlo simulations. Chemical Physics Letters, 600, 73-78. https://doi.org/10.1016/j.cplett.2014.03.050
  31. Plimpton, S.J., 1995, Fast parallel algorithms for short-range molecular dynamics. Journal of Computational Physics, 117, 1-19. https://doi.org/10.1006/jcph.1995.1039
  32. Post, J.E. and Heaney, P.J., 2008, Synchrotron powder X-ray diffraction study of the structure and dehydration behavior of palygorskite. American Mineralogist, 93, 667-675. https://doi.org/10.2138/am.2008.2590
  33. Rubin, E.S., Davison, J.E. and Herzog, H.J., 2015, The cost of CO2 capture and storage. International Journal of Greenhouse Gas Control, 40, 378-400. https://doi.org/10.1016/j.ijggc.2015.05.018
  34. Satyapal, S., Petrovic, J., Read, C., Thomas, G. and Ordaz, G., 2007, The US Department of Energy's National Hydrogen Storage Project: Progress towards meeting hydrogen-powered vehicle requirements. Catalysis today, 120, 246-256. https://doi.org/10.1016/j.cattod.2006.09.022
  35. Song, Y., 2013, New perspectives on potential hydrogen storage materials using high pressure. Physical Chemistry Chemical Physics, 15, 14524-14547. https://doi.org/10.1039/c3cp52154k
  36. Suarez, M. and Garcia-Romero, E., 2011, Advances in the crystal chemistry of sepiolite and palygorskite. In Developments in clay science, Elsevier, 33-65.
  37. Tanaka, H., Kanoh, H., El-Merraoui, M., Steele, W.A., Yudasaka, M., Iijima, S. and Kaneko, K., 2004, Quantum effects on hydrogen adsorption in internal nanospaces of single-wall carbon nanohorns. The Journal of Physical Chemistry B, 108, 17457-17465. https://doi.org/10.1021/jp048603a
  38. Verlet, L., 1967, Computer "experiments" on classical fluids. I. Thermodynamical properties of Lennard-Jones molecules. Physical review, 159, 98-103. https://doi.org/10.1103/PhysRev.159.98
  39. Von Helmolt, R. and Eberle, U., 2007, Fuel cell vehicles: Status 2007. Journal of Power Sources, 165, 833-843. https://doi.org/10.1016/j.jpowsour.2006.12.073
  40. Wang, S., Hou, K. and Heinz, H., 2021, Accurate and compatible force fields for molecular oxygen, nitrogen, and hydrogen to simulate gases, electrolytes, and heterogeneous interfaces. Journal of Chemical Theory and Computation, 17, 5198-5213. https://doi.org/10.1021/acs.jctc.0c01132
  41. Zhang, B., Kang, J. and Kang, T., 2018, Effect of water on methane adsorption on the kaolinite (001) surface based on molecular simulations. Applied Surface Science, 439, 792-800. https://doi.org/10.1016/j.apsusc.2017.12.239
  42. Zhang, F., Zhao, P., Niu, M. and Maddy, J., 2016, The survey of key technologies in hydrogen energy storage. International Journal of Hydrogen Energy, 41, 14535-14552. https://doi.org/10.1016/j.ijhydene.2016.05.293
  43. Zuttel, A., 2003, Materials for hydrogen storage. Materials Today, 6, 24-33. https://doi.org/10.1016/S1369-7021(03)00922-2