• Title/Summary/Keyword: initial compliance

Search Result 92, Processing Time 0.026 seconds

Analysis of Factors Influencing Obesity Treatment according to Initial Condition and Compliance with Medication (초기 조건과 복약 순응도에 따른 비만 치료 영향 인자 분석)

  • Han, Ji-Yeon;Park, Young-Jae
    • Journal of Korean Medicine for Obesity Research
    • /
    • v.19 no.1
    • /
    • pp.31-41
    • /
    • 2019
  • Objectives: The purpose of this study was to investigate the effects of gender, age, body weight, muscle mass, fat mass, body mass index (BMI), metabolism, and compliance with medication on weight loss in obese adults. Methods: We reviewed the medical records of 178 patients who were visited to the Korean Oriental Clinic for 3~6 month and had obesity treatment using Gamitaeumjowee-tang from April 2017 to May 2017. We conducted a paired T-test, correlation coefficient and decision tree to analyze factors influencing obesity treatment. Results: The results of correlation analysis showed that initial weight (kg), initial fat mass (kg), BMI ($kg/m^2$), compliance with medication (%), Original Harris-Benedict Equation, Revised Harris-Benedict Equation and The Mifflin St Jeor Equation was significantly correlated to weight loss (kg) (P<0.001). As a result of constructing the decision tree model, it showed that over 5% weight loss of their initial weight (n=154) was related with initial BMI ($kg/m^2$), compliance with medication (%) and initial muscle mass (kg). In case of over 5 kg weight loss of their initial weight (n=131), it was related with initial BMI ($kg/m^2$), compliance with medication (%) and final BMI ($kg/m^2$). Conclusions: This study suggests that weight loss may be affected by initial factors and that initial factors can be used for obesity treatment.

Structural Design Optimization of a High-Precision Grinding Machine for Minimum Compliance and Lightweight Using Genetic Algorithm (가변 벌점함수 유전알고리즘을 이용한 고정밀 양면 연삭기 구조물의 경량 고강성화 최적설계)

  • Hong Jin-Hyun;Park Jong-Kweon;Choi Young-Hyu
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.3 s.168
    • /
    • pp.146-153
    • /
    • 2005
  • In this paper, a multi-step optimization using genetic algorithm with variable penalty function is introduced to the structural design optimization of a grinding machine. The design problem, in this study, is to find out the optimum configuration and dimensions of structural members which minimize the static compliance, the dynamic compliance, and the weight of the machine structure simultaneously under several design constraints such as dimensional constraints, maximum deflection limit, safety criterion, and maximum vibration amplitude limit. The first step is shape optimization, in which the best structural configuration is found by getting rid of structural members that have no contributions to the design objectives from the given initial design configuration. The second and third steps are sizing optimization. The second design step gives a set of good design solutions having higher fitness for lightweight and minimum static compliance. Finally the best solution, which has minimum dynamic compliance and weight, is extracted from the good solution set. The proposed design optimization method was successfully applied to the structural design optimization of a grinding machine. After optimization, both static and dynamic compliances are reduced more than 58.4% compared with the initial design, which was designed empirically by experienced engineers. Moreover the weight of the optimized structure are also slightly reduced than before.

Structural Design Optimization of a High Speed Machining Center by Using a Simple Genetic Algorithm (유전 알고리즘을 이용한 고속 금형센터의 구조설계 최적화)

  • 최영휴;박선균;배병태;이재윤;김태형;박보선
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.1006-1009
    • /
    • 2000
  • In this study, a multi-step optimization technique combined with a simple genetic algorithm is introduced in order to minimize the static compliance, the dynamic compliance, and the weight of a high speed machining center simultaneously. Dimensional thicknesses of the eight structural members on the static force loop are adopted as design variables. The first optimization step is a static design optimization, in which the static compliance and the weight are minimized under some dimensional and safety constraints. The second step is a dynamic design optimization, where the dynamic compliance and the weight are minimized under the same constraints. After optimization, the weight of the moving body only was reduced to 57.75% and the weight of the whole machining center was reduced to 46.2% of the initial design respectively. Both static and dynamic compliances of the optimum design are also in the feasible range even though they were slightly increased than before.

  • PDF

Rheological Properties of Rough Rice (II) -Compressive Creep of Rough Rice Kernel- (벼의 리올러지 특성(特性)(II) -곡립(穀粒)의 압축(壓縮)크리이프-)

  • Kim, M.S.;Kim, S.R.;Park, J.M.
    • Journal of Biosystems Engineering
    • /
    • v.15 no.3
    • /
    • pp.219-229
    • /
    • 1990
  • The compression creep behavior of grains when loaded depends not only on load but also on duration of load application. The most common methods of studying the load-time characteristics of agricultural products is by employing rheological models such as Burger's model. However it is sometimes not sufficient to describe the viscoelastic behavior of grains to be Burger's model. For this reason, this study was conducted to develop the rheological model which represented the creep compliance response of the rough rice kernel and was a function of initial stress applied and time. The effects of the initial stress applied and the moisture content on the compression creep behavior of the rough rice kernel were analyzed. The results were obtained from the study as follows: 1. Since the viscoelastic behavior of the rough rice kernel was nonlinear, the transient and steady state creep compliance was satisfactorily modelled as follows: $$J({\sigma},t)=A{\sigma}^B[C+Dt-exp(-Ft)]$$ But, for the every stress applied, the compression creep behavior of the samples tested can be well described by Burger's model respectively. 2. The creep compliance, the instantaneous elastic strain, the retarded elastic strain and the viscous strain of the sample tested generally increased in magnitude with increasing the applied initial stress and the moisture content used in the tests. At low moisture content, the creep compliance for the Japonica-type rough rice kernel Was a little higher than those for Indica-type and at high moisture content, vice versa at high moisture content. 3. The retardation times of the samples had not an uniform tendency by the initial stress and the moisture content. The retardation times ranged from 0.66 to 6.76 seconds, and the creep progressed from transient to steady state at a relatively high rate. 4. The less viscous strain than the instantaneous elastic strain for the samples tested indicated that rough rice kernel behaved as a viscoelastic body characterized by elasticity than viscosity.

  • PDF

Structural Design Optimization of a Wafer Grinding Machine for Lightweight and Minimum Compliance Using Genetic Algorithm (유전자 알고리듬 기반 다단계 최적설계 방법을 이용한 웨이퍼 단면 연삭기 구조물의 경량 고강성화 최적설계)

  • Park H.M.;Choi Y.H.;Choi S.J.;Ha S.B.;Kwak C.Y.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.81-85
    • /
    • 2005
  • In this paper, the structural design optimization of a wafer grinding machine using a multi-step optimization with genetic algorithm is presented. The design problem, in this study, is to find out the optimum configuration and dimensions of structural members which minimize the static compliance, the dynamic compliance, and the weight of the machine structure simultaneously under several design constraints. The first design step is shape optimization, in which the best structural configuration is found by getting rid of structural members that have no contributions to the design objectives from the given initial design configuration. The second and third steps are sizing optimization. The second design step gives a set of good design solutions having higher fitness for lightweight and minimum static compliance. Finally the best solution, which has minimum dynamic compliance and weight, is extracted among those good solution set. The proposed design optimization method was successfully applied to the structural design optimization of a high precision wafer grinding machine. After optimization, both static and dynamic compliances are reduced more than $92\%\;and\;93\%$ compared with the initial design, which was designed empirically by experienced engineers. Moreover the weight of the optimized structure are also slightly reduced than before.

  • PDF

The Study on the Mechanical Behavior of the Anastomosis with respect to the Thickness Variation of Elastic Foundation Using Simplified Suturing Model (단순봉합모델을 이용한 문합에서 탄성경계층의 두께 변화에 따른 기계역학적 거동에 관한 연구)

  • 이성욱;한근조;심재준;한동섭;김태형
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.8
    • /
    • pp.188-195
    • /
    • 2004
  • In this paper we analyzed the mechanical behavior with respect to the thickness variation of elastic foundation(fatty tissue) in end-to-end anastomosis. This study considered the preliminary deformed shape induced by suturing in the anastomosis of coronary artery and PTFE with different diameters using simplified suturing model and the fatty tissue surrounding heart and coronary artery for more accurate result using finite element method. Area compliance(CA) was used to analyze the final deformed shape of the anastomotic part with respect to the thickness variation of fatty tissue under mean blood pressure, 100mmHg(13.3㎪). And Equivalent and circumferential stresses in the anastomosis were also analyzed with respect to the change of initial diameter ratio( $R_1$) and fatty tissue thickness( $T_{F}$). The results obtained were as follows : 1 When the elastic foundation, assumed to be incompressive material, surrounded the grafts in anastomosis, the compliance mismatch of artery and PTFE was reduced by 47 -72%. 2. As the initial diameter ratio( $R_1$) became larger, the higher difference of compliance was induced in spite of elastic foundation surrounding grafts. 3. The maximum nondimensional circumferential stress is twice or three times as high as the maximum nondimensional equivalent stress in the anastomotic part.t.

Poisson's Ratio and Corrected Creep Compliance of Fruits (과실의 포와송 비와 크리이프 컴프라이언스 보정)

  • 박종민;김만수
    • Journal of Biosystems Engineering
    • /
    • v.20 no.2
    • /
    • pp.133-140
    • /
    • 1995
  • The model of Poisson's ratio of the fruits was developed on the basis that the cylindrical fruits specimen became the barrel shape when it was being compressed. The model of the corrected creep compliance of the fruits was developed under considering the developed model of Poisson's ratio. Both of the Poisson's ratio and the corrected creep compliance of the samples showed the nonlinear viscoelastic behavior. Those models were a similar form, but their coefficients of the model were different, and these behaviors of the samples were well described by the nonlinear model as a function of the initial stress and time. Effects of storage condition and period on the Poisson's ratio of the samples were investigated, and comparisons between the corrected and the uncorrected creep compliance of the samples were made.

  • PDF

Structural Design Optimization of a High Speed Machining Center Using a Simple Genetic Algorithm (금형가공센터 고속 이송체의 최적설계)

  • 최영휴;박선균;배병태;이재윤;김태형;박보선
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.74-78
    • /
    • 2001
  • In this study, a multi-step optimization technique combined with a simple genetic algorithm is introduce to the structural design optimization of a high speed machining center. In this case, the design problem is to find out the best design variables which minimize the static compliance, the dynamic compliance, and the weight of the machine structure and meet some design constraints simultaneously. Dimensional thicknesses of the thirteen structural members along the static force loop of the machine structure are adopted as design variables. The first optimization step is a static design optimization, in which the static compliance and the weight are minimized under some dimensional and safety constraints. The second step is a dynamic design optimization, where the dynamic compliance and the weight are minimized under the same constraints. After optimization, the weight of the moving body was reduced to 9.1% of the initial design respectively. Both static and dynamic compliances of the optimum design are also in the feasible range even thought they were slightly increased than before.

  • PDF

The Study on Compliance Mismatch with respect to the Thickness Variation of Elastic Foundation in Anastomosis Using Simplified Suturing Model (단순봉합모델을 이용한 문합에서 탄성경계층의 두께 변화에 따른 컴플라이언스 부적합에 관한 연구)

  • 이성욱;심재준;한동섭;한근조;김태형
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1302-1305
    • /
    • 2003
  • In this paper we analyzed the effect of compliance mismatch with respect to the thickness variation of elastic foundation(fatty tissue) in end-to-end anastomosis. This study considered the preliminary deformed shape induced by suturing in the anastomosis of coronary artery and PTFE with different diameters using simplified suturing model and the fatty tissue surrounding heart and coronary artery for more accurate result using finite element method. Area compliance(C$\sub$A/) was used to analyze the final deformed shape of the anastomotic part with respect to the thickness variation of fatty tissue under mean blood pressure, 100 mmHg(13.3kPa). The results obtained were as follows : 1. When the elastic foundation, assumed to be incompressive material, surrounded the grafts in anastomosis, the compliance mismatch of artery and PTFE was improved by 47∼72%. 2. As the initial diameter ratio(R$\sub$I/) became larger, the higher difference of compliance was induced in spite of elastic foundation surrounding grafts.

  • PDF

Multi-step Optimization of the Moving Body for the High Speed Machinining Center using Weighted Method and G.A. (가중치방법과 유전알고리즘을 이용한 금형가공센터 고속이송체의 다단계 최적설계)

  • 최영휴;배병태;강영진;이재윤;김태형
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.23-27
    • /
    • 1997
  • This paper introduces the structural design optimization of a high speed machining center using multi-step optimization combined with G.A.(Genetic Algorithm) and Weighted Method. In this case, the design problem is to find out the best design variables which minimize the static compliance, the dynamic compliance, and the weight of the machine structure simultaneously. Dimensional thicknesses of the thirteen structural members of the machine structure are adopted as design variables. The first step is the cross-section configuration optimization, in which the area moment of inertia of the cross-section for each structural member is maximized while its area is kept constant The second step is a static design optimization, In which the static compliance and the weight of the machine structure are minimized under some dimensional and safety constraints. The third step IS a dynamic design optimization, where the dynamic compliance and the structure weight are minimized under the same constraints. After optunization, static and dynamic compliances were reduced to 62.3% and 95.7% Eorn the initial design, while the weight of the moving bodies are also in the feaslble range.

  • PDF