• Title/Summary/Keyword: initial cable force

Search Result 59, Processing Time 0.021 seconds

Modified nonlinear force density method for form-finding of membrane SAR antenna

  • Xu, Rui;Li, DongXu;Liu, Wang;Jiang, JianPing;Liao, YiHuan;Wang, Jie
    • Structural Engineering and Mechanics
    • /
    • v.54 no.6
    • /
    • pp.1045-1059
    • /
    • 2015
  • Form-finding for cable-membrane structures is a delicate operation. During the last decades, the force density method (FDM) was considered to be an efficient method to address the problem. Many researchers were devoted to improving this method and proposed many methods such as natural force density method (NFDM), improved nonlinear force density method (INFDM), et al. In this paper, a modified nonlinear force density method (MNFDM) is proposed. In this method, the stresses of membrane elements were transformed to the force-densities of cable nets by an equivalent relationship, and then they can be used as initial conditions. By comparing with the forming finding results by using the FDM, NFDM, INFDM and MNFDM, it had demonstrated that the MNFDM presented in this paper is the most efficient and precise.

Influence of lateral motion of cable stays on cable-stayed bridges

  • Wang, P.H.;Liu, M.Y.;Huang, Y.T.;Lin, L.C.
    • Structural Engineering and Mechanics
    • /
    • v.34 no.6
    • /
    • pp.719-738
    • /
    • 2010
  • The aim of this paper concerns with the nonlinear analysis of cable-stayed bridges including the vibration effect of cable stays. Two models for the cable stay system are built up in the study. One is the OECS (one element cable system) model in which one single element per cable stay is used and the other is MECS (multi-elements cable system) model, where multi-elements per cable stay are used. A finite element computation procedure has been set up for the nonlinear analysis of such kind of structures. For shape finding of the cable-stayed bridge with MECS model, an efficient computation procedure is presented by using the two-loop iteration method (equilibrium iteration and shape iteration) with help of the catenary function method to discretize each single cable stay. After the convergent initial shape of the bridge is found, further analysis can then be performed. The structural behaviors of cable-stayed bridges influenced by the cable lateral motion will be examined here detailedly, such as the static deflection, the natural frequencies and modes, and the dynamic responses induced by seismic loading. The results show that the MECS model offers the real shape of cable stays in the initial shape, and all the natural frequencies and modes of the bridge including global modes and local modes. The global mode of the bridge consists of coupled girder, tower and cable stays motion and is a coupled mode, while the local mode exhibits only the motion of cable stays and is uncoupled with girder and tower. The OECS model can only offers global mode of tower and girder without any motion of cable stays, because each cable stay is represented by a single straight cable (or truss) element. In the nonlinear seismic analysis, only the MECS model can offer the lateral displacement response of cable stays and the axial force variation in cable stays. The responses of towers and girders of the bridge determined by both OECS- and MECS-models have no great difference.

Closing Step Analysis in Cable-Stayed Bridges to Produce Initial Equilibrium Condition (초기평형상태 구현을 위한 사장교의 폐합단계 해석)

  • Park, Yong Myung;Yun, Jae Sun;Cho, Hyun Jun;Park, Chung Gon
    • Journal of Korean Society of Steel Construction
    • /
    • v.19 no.2
    • /
    • pp.191-199
    • /
    • 2007
  • This paper presents a closing method for a cable-stayed bridge erected by the free cantilever method to produce the initial equilibrium configuration at the final construction stage. To realize the initial equilibrium condition in cable-stayed bridge by the cantilever method, compatibility conditions for vertical displacements, rotational angles, and axial displacements at the closing section of both side girders should be satisfied. In this paper, it was shown that it can be accomplished by using some applicable loads during construction such as the pull-up force of the derrick crane, some cable tension forces, and jacking force at the pylon. The proposed method was applied to a construction stage analysis of a sample bridge to demonstrate its validity, and it was acknowledged that the tower was considerably affected by the compatibility condition for axial displacement in the closing step.

A Clamping Force Estimation Method in Electric Parking Brake Systems (전자 제어식 주차브레이크 시스템의 제동력 추정 기법)

  • Jang, Min-Seok;Lee, Young-Ok;Lee, Won-Goo;Lee, Choong-Woo;Son, Young-Sup;Chung, Chung-Choo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.12
    • /
    • pp.2291-2299
    • /
    • 2008
  • Hall effect force sensors have been used to measure clamping force in conventional Electric Parking Brake(EPB) systems. Estimation of clamping force without the sensors has drawn attentions due to mounting space limitations and cost issues. Removing the sensor requires the estimation of the initial contact point where the clamping force is effectively applied to the brake pads. In this paper, we propose how to estimate the initial contact point finding the relation between the angular velocity of an actuator and the initial contact point. For force estimation a look-up table is used as a function of the displacement of parking cable from the initial contact point. The proposed method is validated by experiments. From the experimental results we observe that the proposed method satisfies the specifications. The designed method is also able to estimate clamping force although parking cables are loosened and brake pads are worn out. Applying the proposed method enables manufacturing of low cost EPB systems.

A Study on Dynamic Response Analysis of the Cable-Stayed Bridge Using the Stochastic Finite Element Method (확률유한요소법을 이응한 사장교의 동적응답해석)

  • 한성호;정인수;김진홍;신재철
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2003.10a
    • /
    • pp.365-372
    • /
    • 2003
  • In this study, the program which determine the initial cable tension force by tile initial shape analysis for cable stayed bridge is developed. Also, DSFEMP(Dynamic Stochastic Finite Element Analysis Program) is developed to consider the variance of random variables at each step of dynamic response analysis, not use existing methods that apply to the theory of reliability at the final step of structural analysis. In addition, the output from the developed program was compared with the results from DMCSP(Direct Monte Carlo Simulation Program) to prove its validity.

  • PDF

Maintenance And Reinforcement Design Of Olympic fencing Stadium (올림픽 펜싱경기장의 보수.보강설계)

  • HwangBo, Suk;Yoon, Kwang-Jae;Han, Sang-Eul
    • Proceeding of KASS Symposium
    • /
    • 2005.05a
    • /
    • pp.108-115
    • /
    • 2005
  • Maintenance and reinforcement are very important especially in the case of the hybrid structures. In this paper, we introduce the maintenance and reinforcement design method of cable dome structures. In the case of the Olympic fencing stadium structural system has the stiffness in dependence of the initial tension force. Therefore, the verification of this phenomenon is very important. The result shows that the final tension force which is measured is almost reached to the calculated aim tension force after the maintenance ana reinforcement works is confirmed.

  • PDF

Nonlinear Analysis of IPS System using the multi-noded cable element (다절점 케이블요소를 이용한 IPS 시스템의 비선형 해석)

  • Lee Jun-Seok;Kim Moon-Young;Han Man-Yop;Kim Sung-Bo;Kim Nak-Kyung
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.623-630
    • /
    • 2006
  • In this paper, a geometric nonlinear analysis procedure of beam-column element including multi-noded cable element is presented. For this, first a stiffness matrix about beam-column element which considers the second effect of initial force supposing the curved shape at each time step with Hermitian polynomials as the shape function is derived and second, tangent stiffness matrix about multi-noded cable element being too. To verify geometric nonlinearity of this newly developed multi-noded cable-truss element, IPS(Innovative Prestressed Support) system using this theory is analysed by geometric nonlinear method and the results are compared with those by linear analysis.

  • PDF

Back Analysis for Estimating Tension Force on Hanger Cables (역해석기법을 이용한 현수교 행어케이블 장력 추정)

  • Kim, Nam-Sik;Bin, Jung-Min;Chang, Sung-Jin
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.894-901
    • /
    • 2006
  • In general, the tension fores of hanger cable in suspension bridges play an important role in evaluating the bridge state. The vibration method, as a conventional one, has been widely applied to estimate the tension fores by using the measured frequencies on hanger cables. However, the vibration method is not applicable to short hanger cables because the frequency of short cables is severely sensitive to the flexural rigidity. Thus, in this study, the tension forces of short hanger cables, of which the length is shorter than 10meters, were estimated through back analysis of the cable frequencies measured from Gwang-An suspension bridge in Korea. Direct approach to rock analysis is adopted using the univariate method among the direct search methods as an optimization technique. The univariate method is able to search the optimal tension forces without regard to the initial ones and has a rapid convergence rate. To verify the feasibility of back analysis, the results from back analysis and vibration method are compared with the design tension forces. From the comparison, it can be inferred that back analysis results are more reasonable agreement with the design tension forces of short hanger cable. Therefore, it is concluded that back analysis applied in this study is an appropriate tool for estimating tension forces of short hanger cables.

  • PDF

Probabilistic Structural Safety Assessment Considering the Initial Shape and Non-linearity of Steel Cable-Stayed Bridges (강사장교의 초기형상과 비선형성을 고려한 확률론적 구조안전성 평가)

  • Bang, Myung-Seok;Han, Sung-Ho;Lee, Woo-Sang;Lee, Chin-Ok
    • Journal of the Korean Society of Safety
    • /
    • v.25 no.3
    • /
    • pp.91-99
    • /
    • 2010
  • In this study, the advanced numerical algorithm is developed which can performed the static and dynamic stochastic finite element analysis by considering the effect of uncertainties included in the member stiffness of steel cable-stayed bridges and seismic load. After conducting the linear and nonlinear initial shape analysis, the advanced numerical algorithm is the assessment tool which can performed structural the response analysis considering the static linearity and non-linearity of before or after induced intial tensile force, and examined the reliability assessment more efficiently. The verification of the developed numerical algorithm is evaluated by analyzing the regression analysis and coefficient of correlation using the direct monte carlo simulation. Also, the dynamic response characteristic and coefficient of variation of the steel cable-stayed bridge is calculated by considering the uncertainty of random variables using the developed numerical algorithm. In addition, the quantitative structural safety of the steel cable-stayed bridges is evaluated by conducting the reliability assessment based upon the dynamic stochastic finite element analysis result.

Comparison Study of Elastic Catenary and Elastic Parabolic Cable Elements for Nonlinear Analysis of Cable-Supported Bridges (케이블교량의 비선형해석을 위한 탄성현수선 및 탄성포물선 케이블요소의 비교연구)

  • Song, Yo Han;Kim, Moon Young
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.5A
    • /
    • pp.361-367
    • /
    • 2011
  • This study introduces an elastic parabolic cable element for initial shaping analysis of cable-supported structures. First, an elastic catenary cable theory is shortly summarized by deriving the compatibility condition and the tangent stiffness matrices of the elastic catenary cable element. Next, the force-deformation relations and the tangent stiffness matrices of the elastic parabolic cable elements are derived and discussed under the assumption that sag configuration under self-weights is small. In addition the equivalent cable tension is defined in the chord-wise direction. Finally, to demonstrate the accuracy of the elastic parabolic cable element, nonlinear relationships of nominal cable tension-chord length and nominal cable tension-tangential stiffness for a single element are presented and compared with results using an elastic catenary cable theory as the slope is varied.