• 제목/요약/키워드: information tracking model

검색결과 792건 처리시간 0.026초

클라우드 환경에서 프라이빗 블록체인을 이용한 이상 행위 추적 보안 모델 (Security Model Tracing User Activities using Private BlockChain in Cloud Environment)

  • 김영수;김영찬;이병엽
    • 한국콘텐츠학회논문지
    • /
    • 제18권11호
    • /
    • pp.475-483
    • /
    • 2018
  • 대부분의 물류시스템은 물류정보와 물류흐름의 불일치로 인한 실세계 문제로 운송물류 추적성에 어려움을 경험한다. 이의 해결 방안으로 쇼핑몰을 이용한 주문 상품의 운송에 참여하는 공급체인 기업에 대한 사례연구를 통해서 물류와 정보 흐름의 일치를 통한 주문 상품의 추적성을 확보할 수 있는 운송 물류 추적 모델을 도출하였다. 문헌연구를 통해서 운송 물류 추적 모델에 가장 적합한 참조 모델로 허가형 퍼블릭 블록체인 모델을 선정하였고 운송 물류 추적 모델의 실용성 검증을 위한 비교 분석과 평가를 위해서 중앙집중형 모델과 블록체인 모델을 사용하였다. 본 논문에서 제안하고 있는 운송 물류 추적 모델은 실세계의 물류시스템과 통합되어 운송 물류의 추적을 통해서 운송 정보와의 불일치를 탐지하는데 사용될 수 있고 기업 이미지 제고를 위한 마케팅 도구로 활용될 수 있다.

이동 물체를 추적하기 위한 감각 운동 융합 시스템 설계 (The Sensory-Motor Fusion System for Object Tracking)

  • 이상희;위재우;이종호
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제52권3호
    • /
    • pp.181-187
    • /
    • 2003
  • For the moving objects with environmental sensors such as object tracking moving robot with audio and video sensors, environmental information acquired from sensors keep changing according to movements of objects. In such case, due to lack of adaptability and system complexity, conventional control schemes show limitations on control performance, and therefore, sensory-motor systems, which can intuitively respond to various types of environmental information, are desirable. And also, to improve the system robustness, it is desirable to fuse more than two types of sensory information simultaneously. In this paper, based on Braitenberg's model, we propose a sensory-motor based fusion system, which can trace the moving objects adaptively to environmental changes. With the nature of direct connecting structure, sensory-motor based fusion system can control each motor simultaneously, and the neural networks are used to fuse information from various types of sensors. And also, even if the system receives noisy information from one sensor, the system still robustly works with information from other sensors which compensates the noisy information through sensor fusion. In order to examine the performance, sensory-motor based fusion model is applied to object-tracking four-foot robot equipped with audio and video sensors. The experimental results show that the sensory-motor based fusion system can tract moving objects robustly with simpler control mechanism than model-based control approaches.

Fuzzy-Model-Based Kalman Filter for Radar Tracking

  • Lee, Bum-Jik;Joo, Young-Hoon;Park, Jin-Bae
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2003년도 ISIS 2003
    • /
    • pp.311-314
    • /
    • 2003
  • In radar tracking, since the sensor measures range, azimuth and elevation angle of a target, the measurement equation is nonlinear and the extended Kalman filter (EKF) is applied to nonlinear estimation. The conventional EKF has been widely used as a nonlinear filter for radar tracking, but the considerably large measurement error due to the linearization of nonlinear function in highly nonlinear situations may deteriorate the performance of the EKF. To solve this problem, a fuzzy-model-based Kalman filter (FMBKF) is proposed for radar tracking. The FMBKP uses a local model approximation based on a TS fuzzy model instead of a Jacobian matrix to linearize nonlinear measurement equation. The hybrid GA and RLS method is used to identify the premise and the consequent parameters and the rule numbers of this TS fuzzy model. In two-dimensional radar tracking problem, the proposed method is compared with the conventional EKF.

  • PDF

다중이동물체 추적을 위한 모델생성 알고리즘 (Model Creation Algorithm for Multiple Moving Objects Tracking)

  • 조남형;김하식;이명길;이주신
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2001년도 춘계종합학술대회
    • /
    • pp.633-637
    • /
    • 2001
  • 본 논문은 모델기반 다중이동물체 추적을 위한 모델생성 알고리즘을 제안하였다. 제안한 알고리즘은 배경영상에 이동물체가 초기 진입했을 때의 초기모델생성 단계와 이동물체 추적 단계에서의 모델 갱신 단계로 구분하였다. 초기모델생성 단계에서는 차영상과 클러스터링 기법을 이용하여 분할된 분할영상과 현재프레임 영상에 대한 윤곽선 영상과의 로직 AND 연산을 수행하여 초기모델을 생성하였다. 모델갱신 단계에서는 하우스돌프 거리(Hausdorff Distance)와 2D-Logarithmic 탐색 알고리즘을 이용하여 추적중인 이동물체의 형태변화에 적응할 수 있도록 매 프레임 마다 새로운 모델을 갱신하였다. 실험은 도로에서 주행하는 자동차를 대상으로 도_의 실험을 수행하였다. 그 결과 도로에서 주행하는 자동차의 진입방향과 추적 대상 수가 불규칙한 경우에도 모델생성이 98% 이상 이루어짐을 알 수 있었다.

  • PDF

능동 특징점 모델을 이용한 스테레오 영상 기반의 실시간 객체 추적 (Stereo Images-Based Real-time Object Tracking Using Active Feature Model)

  • 박민규;장종환
    • 정보처리학회논문지B
    • /
    • 제16B권2호
    • /
    • pp.109-116
    • /
    • 2009
  • 본 논문에서는 스테레오 영상 기반에서 능동 특징점 모델(active feature model)과 광류(optical flow)를 이용한 객체 추적 기술을 제안한다. 스테레오의 기하학적 정보와 변위를 이용하여 관심 객체와 특징점의 2.5차원 이동 정보(translation information)를 계산한다. 이 정보를 이용하여 폐색 객체의 특징점의 이동 정보를 예측하여 추적 성능을 개선하였다. 정형(rigid) 및 비정형(non-rigid) 객체에 실험을 하였다. 실험 결과 복잡한 배경 속에서의 실시간 객체 추적이 가능하였다. 또한 정형, 비정형 객체에 관계없이 추적이 가능 하였으며 폐색 상황에 향상된 결과를 보였다.

Federated Information Mode-Matched Filters in ACC Environment

  • Kim Yong-Shik;Hong Keum-Shik
    • International Journal of Control, Automation, and Systems
    • /
    • 제3권2호
    • /
    • pp.173-182
    • /
    • 2005
  • In this paper, a target tracking algorithm for tracking maneuvering vehicles is presented. The overall algorithm belongs to the category of an interacting multiple-model (IMM) algorithm used to detect multiple targets using fused information from multiple sensors. First, two kinematic models are derived: a constant velocity model for linear motions, and a constant-speed turn model for curvilinear motions. Fpr the constant-speed turn model, a nonlinear information filter is used in place of the extended Kalman filter. Being equivalent to the Kalman filter (KF) algebraically, the information filter is extended to N-sensor distributed dynamic systems. The model-matched filter used in multi-sensor environments takes the form of a federated nonlinear information filter. In multi-sensor environments, the information-based filter is easier to decentralize, initialize, and fuse than a KF-based filter. In this paper, the structural features and information sharing principle of the federated information filter are discussed. The performance of the suggested algorithm using a Monte Carlo simulation under the two patterns is evaluated.

이동 로봇 추적을 위한 스테레오 영상기반 퍼지 추적제어 (Fuzzy Tracking Control Based on Stereo Images for Tracking of Moving Robot)

  • 민현홍;유동상;김용태
    • 한국지능시스템학회논문지
    • /
    • 제22권2호
    • /
    • pp.198-204
    • /
    • 2012
  • 로봇들의 협동 작업을 위해서는 다양한 환경에서 다른 로봇들을 인식하고 추적하는 기술이 요구된다. 본 논문에서는 코드북 모델과 스테레오 영상 처리를 이용하여 이동 로봇을 인식하고, 퍼지 제어기를 사용해 추적하는 이동 로봇 추적 제어 시스템을 제안한다. 먼저 코드북 모델을 사용하여 영상의 전경과 배경을 분리하였다. 분리된 전경에서 색상정보를 기반으로 관심영역을 구해내고, 스테레오 영상처리를 통해 얻은 깊이 영상을 기반으로 이동 로봇까지의 실제 거리를 추정한다. 각 거리에 따라 열림 및 닫힘 연산을 적용하고, 모듈형 로봇의 크기에 맞춰 라벨링을 통해 효과적으로 이동 로봇을 인식한다. 추출된 이동 로봇의 움직임에 따른 효과적인 추적을 위하여 스테레오 영상 처리를 통해 얻은 거리 정보와 로봇의 이동 정보를 이용해 퍼지 제어기를 설계하여 이동 로봇 추적 시스템을 제안하였다. 제안한 퍼지 추적 제어 시스템의 성능은 실제 이동 로봇의 추적 실험을 통하여 검증하였다.

컬러 히스토그램과 CNN 모델을 이용한 객체 추적 (Object Tracking using Color Histogram and CNN Model)

  • 박성준;백중환
    • 한국항행학회논문지
    • /
    • 제23권1호
    • /
    • pp.77-83
    • /
    • 2019
  • 본 논문에서는 컬러 히스토그램과 CNN 모델을 이용한 객체 추적 기법 알고리즘을 제안한다. CNN (convolutional neural network) 모델기반 객체 추적 알고리즘인 GOTURN (generic object tracking using regression network)의 정확도를 높이기 위해 컬러 히스토그램 기반 mean-shift 추적 알고리즘을 합성하였다. 두 알고리즘을 SVM (support vector machine)을 통해 분류하여 추적 정확도가 더 높은 알고리즘을 선택하도록 설계하였다. Mean-shift 추적 알고리즘은 객체 추적에 실패할 때 경계 박스가 큰 범위로 움직이는 경향이 있어 경계 박스의 이동거리에 제한을 두어 정확도를 향상시켰다. 또한 영상 평균 밝기, 히스토그램 유사도를 고려하여 두 알고리즘의 추적 시작 위치를 초기화하여 성능을 높였다. 결과적으로 기존 GOTURN 알고리즘보다 본 논문에서 제안한 알고리즘이 전체적으로 정확도가 1.6% 향상되었다.

딥러닝 기반 LSTM 모형을 이용한 항적 추적성능 향상에 관한 연구 (Improvement of Track Tracking Performance Using Deep Learning-based LSTM Model)

  • 황진하;이종민
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2021년도 춘계학술대회
    • /
    • pp.189-192
    • /
    • 2021
  • 항적추적 기술에 딥러닝 기반 LSTM(Long Short-Term Memory) 모델을 적용하는 연구로서 기존의 항적추적기술의 경우, 항공기의 등속, 등가속, 급기동, 선회(3D) 비행 등 비행 특성에 따른 칼만 필터 기반의 LMIPDA를 활용한 실시간 항적 추적 시 등속, 등가속, 급기동, 선회(3D) 비행 가중치가 자동으로 변경된다. 이러한 과정에서 등속 비행 중 급기동 비행과 같이 비행 특성이 변경될 때, 항적 손실 및 항적 추적 성능이 하락하여 비행 특성 가중치 변경성능을 향상시킬 필요성이 있다. 본 연구는 레이더의 오차 모델이 적용된 시뮬레이터의 Plot과 표적을 딥러닝 기반 LSTM(Long Short-Term Memory) 모델을 적용하여 학습시키고, 칼만 필터를 활용한 항적추적 결과와 딥러닝 기반 LSTM(Long Short-Term Memory) 모델을 적용한 항적추적결과를 비교함으로써 미리 비행 특성의 변경과정을 예측하여 등속, 등가속, 급기동, 선회(3D) 비행 가중치변경을 신속하게 함으로써 항적추적성능을 향상하기 위한 연구이다.

  • PDF

퍼지모델 기반 칼만 필터를 이용한 레이다 표적 추적 (Radar Tracking Using a Fuzzy-Model-Based Kalman Filter)

  • Lee, Bum-Jik;Joo, Young-Hoon;Park, Jin-Bae
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2003년도 춘계 학술대회 학술발표 논문집
    • /
    • pp.303-306
    • /
    • 2003
  • In radar tracking, since the sensor measures range, azimuth and elevation angle of a target, the measurement equation is nonlinear and the extended Kalman filter (EKF) is applied to nonlinear estimation. The conventional EKF has been widely used as a nonlinear filter for radar tracking, but the considerably large measurement error due to the linearization of nonlinear function in highly nonlinear situations may deteriorate the performance of the EKF To solve this problem, a fuzzy-model-based Kalman filter (FMBKF) is proposed for radar tracking. The FMBKF uses a local model approximation based on a TS fuzzy model instead of a Jacobian matrix to linearize nonlinear measurement equation. The hybrid GA and RLS method is used to identify the premise and the consequent parameters and the rule numbers of this TS fuzzy model. In two-dimensional radar tracking problem, the proposed method is compared with the conventional EKF.

  • PDF