• Title/Summary/Keyword: information needs analysis

Search Result 2,542, Processing Time 0.036 seconds

A Study on the Influence of Workers' Aspiration for Academic Needs on Participation in University Education (근로자의 학업욕구 열망이 대학교육 참여에 미치는 영향에 관한 연구)

  • Lee, Ji-Hun;Mun, Bok-Hyun
    • Journal of Korea Entertainment Industry Association
    • /
    • v.15 no.3
    • /
    • pp.231-241
    • /
    • 2021
  • This study intended to present strategies and implications for attracting new students and customized education to university officials through research on the participation of workers' academic aspirations in university education. Thus, variables were derived by analyzing prior data, and causal settings between variables and questionnaires were developed. Subject to the survey, 331 workers interested in participating in university education were collected through interpersonal interviews. The collected data were dataized, and reliability and feasibility verification and frequency analysis were conducted. Finally, we validate the fit of the structural equation model and the causal relationship for each concept. Therefore, the results of the validation show the following implications. First, university officials should be motivated by a mentor and mentee system with experienced people who have switched to a suitable vocational group through university education. It will also be necessary to develop and disseminate programs so that they can continue to develop themselves for the future. To this end, it will be necessary to help them understand their aptitude and strengths through consultation with experts. Second, university officials should strengthen public relations so that prospective students can know the cases and information of the job transformation of the admitted workers through recommendations. It will also be necessary to develop university education programs that can self-develop, accept various ideas through "public contest", and provide accurate information about university education to workers through re-processing. Third, university officials should provide workers with a program that allows them to catch two rabbits: job transformation and self-improvement through university education. In other words, it is necessary to stimulate the motivation of workers by providing various information such as visiting advanced overseas companies, obtaining various certificates, moving between departments of blue-collar and white-collar, and transfer opportunities. Fourth, university officials should actively promote university education programs related to this by participating in university education and receiving systematic education and the flow of social environment. Finally, university officials will need to consult and promote workers so that they can self-develop when they participate in college education, and they will have to figure out what they need for self-development through demand surveys and analysis.

Improving the Accuracy of Document Classification by Learning Heterogeneity (이질성 학습을 통한 문서 분류의 정확성 향상 기법)

  • Wong, William Xiu Shun;Hyun, Yoonjin;Kim, Namgyu
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.3
    • /
    • pp.21-44
    • /
    • 2018
  • In recent years, the rapid development of internet technology and the popularization of smart devices have resulted in massive amounts of text data. Those text data were produced and distributed through various media platforms such as World Wide Web, Internet news feeds, microblog, and social media. However, this enormous amount of easily obtained information is lack of organization. Therefore, this problem has raised the interest of many researchers in order to manage this huge amount of information. Further, this problem also required professionals that are capable of classifying relevant information and hence text classification is introduced. Text classification is a challenging task in modern data analysis, which it needs to assign a text document into one or more predefined categories or classes. In text classification field, there are different kinds of techniques available such as K-Nearest Neighbor, Naïve Bayes Algorithm, Support Vector Machine, Decision Tree, and Artificial Neural Network. However, while dealing with huge amount of text data, model performance and accuracy becomes a challenge. According to the type of words used in the corpus and type of features created for classification, the performance of a text classification model can be varied. Most of the attempts are been made based on proposing a new algorithm or modifying an existing algorithm. This kind of research can be said already reached their certain limitations for further improvements. In this study, aside from proposing a new algorithm or modifying the algorithm, we focus on searching a way to modify the use of data. It is widely known that classifier performance is influenced by the quality of training data upon which this classifier is built. The real world datasets in most of the time contain noise, or in other words noisy data, these can actually affect the decision made by the classifiers built from these data. In this study, we consider that the data from different domains, which is heterogeneous data might have the characteristics of noise which can be utilized in the classification process. In order to build the classifier, machine learning algorithm is performed based on the assumption that the characteristics of training data and target data are the same or very similar to each other. However, in the case of unstructured data such as text, the features are determined according to the vocabularies included in the document. If the viewpoints of the learning data and target data are different, the features may be appearing different between these two data. In this study, we attempt to improve the classification accuracy by strengthening the robustness of the document classifier through artificially injecting the noise into the process of constructing the document classifier. With data coming from various kind of sources, these data are likely formatted differently. These cause difficulties for traditional machine learning algorithms because they are not developed to recognize different type of data representation at one time and to put them together in same generalization. Therefore, in order to utilize heterogeneous data in the learning process of document classifier, we apply semi-supervised learning in our study. However, unlabeled data might have the possibility to degrade the performance of the document classifier. Therefore, we further proposed a method called Rule Selection-Based Ensemble Semi-Supervised Learning Algorithm (RSESLA) to select only the documents that contributing to the accuracy improvement of the classifier. RSESLA creates multiple views by manipulating the features using different types of classification models and different types of heterogeneous data. The most confident classification rules will be selected and applied for the final decision making. In this paper, three different types of real-world data sources were used, which are news, twitter and blogs.

Job Analysis for Role Identification of General Hospice Palliative Nurse (호스피스 완화 간호사 역할규명을 위한 직무분석)

  • Kim, Boon-Han;Choe, Sang-Ok;Chung, Bok-Yae;Yoo, Yang-Sook;Kim, Hyun-Sook;Kang, Kyung-Ah;Yu, Su-Jeong;Jung, Yun
    • Journal of Hospice and Palliative Care
    • /
    • v.13 no.1
    • /
    • pp.13-23
    • /
    • 2010
  • Purpose: This study was to identify the role of general hospice palliative nurse through job analysis (duties, task, and task elements). Methods: The sample consisted of 136 nurses or professors who were performing duties related to hospice care areas in Korea. A survey method was used, and the questionnaire included frequencies, criticality, and difficulties of task elements in job description by the DACUM method. Descriptive statistics were performed by using SPSS WIN 17.0. Results: The job description of general hospice palliative nurse was identified 8 duties, 36 tasks, and 137 task elements. As for the 8 duties, the average scores of frequency, criticality, and difficulty were 2.94, 3.66, and 2.80, respectively. The role of ‘pain assessment’ was the most important task element among frequency and criticality. The lowest score at the frequency and criticality were ‘manage public finance’ and ‘collect datum through diagnostic test & lab', respectively. Furthermore, the role of 'identify spiritual needs of patients and family' was the most difficult task, whereas the role of 'manage documents and information' was the least. Conclusion: In this study, we could recognize the reality of general hospice palliative nurse's performances. For general hospice palliative nurse, therefore, concrete practice guide lines of psychosocial and spiritual care, communication skills, and bereavement care with qualifying system are critically needed.

Current Trends for National Bibliography through Analyzing the Status of Representative National Bibliographies (주요국 국가서지 현황조사를 통한 국가서지의 최신 경향 분석)

  • Lee, Mihwa;Lee, Ji-Won
    • Journal of the Korean BIBLIA Society for library and Information Science
    • /
    • v.32 no.1
    • /
    • pp.35-57
    • /
    • 2021
  • This paper is to grasp the current trends of national bibliographies through analyzing representative national bibliographies using literature review, analysis of national bibliographies' web pages and survey. First, in order to conform to the definition of a national bibliography as a record of a national publication, it attempts to include a variety of materials from print to electronic resources, but in reality it cannot contain all the materials, so there are exceptions. It is impossible to create a general selection guide for national bibliography coverage, and a plan that reflects the national characteristics and prepares a valid and comprehensive coverage based on analysis is needed. Second, cooperation with publishers and libraries is being made to efficiently generate national bibliography. For the efficiency of national bibliography generation, changes should be sought such as the standardization and consistency, the collection level metadata description for digital resources, and the creation of national bibliography using linked data. Third, national bibliography is published through the national bibliographic online search system, linked data search, MARC download using PDF, OAI-PMH, SRU, Z39.50, and mass download in RDF/XML format, and is integrated with the online public access catalog or also built separately. Above all, national bibliographies and online public access catalogs need to be built in a way of data reuse through an integrated library system. Fourth, as a differentiated function for national bibliography, various services such as user tagging and national bibliographic statistics are provided along with various browsing functions. In addition, services of analysis of national bibliographic big data, links to electronic publications, and mass download of linked data should be provided, and it is necessary to identify users' needs and provide open services that reflect them in order to develop differentiated services. Through the current trends and considerations of the national bibliographies analyzed in this study, it will be possible to explore changes in national and international national bibliography.

Study on Basic Elements for Smart Content through the Market Status-quo (스마트콘텐츠 현황분석을 통한 기본요소 추출)

  • Kim, Gyoung Sun;Park, Joo Young;Kim, Yi Yeon
    • Korea Science and Art Forum
    • /
    • v.21
    • /
    • pp.31-43
    • /
    • 2015
  • Information and Communications Technology (ICT) is one of the technologies which represent the core value of the creative economy. It has served as a vehicle connecting the existing industry and corporate infrastructure, developing existing products and services and creating new products and services. In addition to the ICT, new devices including big data, mobile gadgets and wearable products are gaining a great attention sending an expectation for a new market-pioneering. Further, Internet of Things (IoT) is helping solidify the ICT-based social development connecting human-to-human, human-to-things and things-to-things. This means that the manufacturing-based hardware development needs to be achieved simultaneously with software development through convergence. The essential element the convergence between hardware and software is OS, for which world's leading companies such as Google and Apple have launched an intense development recognizing the importance of software. Against this backdrop, the status-quo of the software market has been examined for the study of the present report (Korea Evaluation Institute of Industrial Technology: Professional Design Technology Development Project). As a result, the software platform-based Google's android and Apple's iOS are dominant in the global market and late comers are trying to enter the market through various pathways by releasing web-based OS and similar OS to provide a new paradigm to the market. The present study is aimed at finding the way to utilize a smart content by which anyone can be a developer based on OS responding to such as social change, newly defining a smart content to be universally utilized and analyzing the market to deal with a rapid market change. The study method, scope and details are as follows: Literature investigation, Analysis on the app market according to a smart classification system, Trend analysis on the current content market, Identification of five common trends through comparison among the universal definition of smart content, the status-quo of application represented in the app market and content market situation. In conclusion, the smart content market is independent but is expected to develop in the form of a single organic body being connected each other. Therefore, the further classification system and development focus should be made in a way to see the area from multiple perspectives including a social point of view in terms of the existing technology, culture, business and consumers.

Open Skies Policy : A Study on the Alliance Performance and International Competition of FFP (항공자유화정책상 상용고객우대제도의 제휴성과와 국제경쟁에 관한 연구)

  • Suh, Myung-Sun;Cho, Ju-Eun
    • The Korean Journal of Air & Space Law and Policy
    • /
    • v.25 no.2
    • /
    • pp.139-162
    • /
    • 2010
  • In terms of the international air transport, the open skies policy implies freedom in the sky or opening the sky. In the normative respect, the open skies policy is a kind of open-door policy which gives various forms of traffic right to other countries, but on the other hand it is a policy of free competition in the international air transport. Since the Airline Deregulation Act of 1978, the United States has signed an open skies agreement with many countries, starting with the Netherlands, so that competitive large airlines can compete in the international air transport market where there exist a lot of business opportunities. South Korea now has an open skies agreement with more than 20 countries. The frequent flyer program (FFP) is part of a broad-based marketing alliance which has been used as an airfare strategy since the U.S. government's airline deregulation. The membership-based program is an incentive plan that provides mileage points to customers for using airline services and rewards customer loyalty in tangible forms based on their accumulated points. In its early stages, the frequent flyer program was focused on marketing efforts to attract customers, but now in the environment of intense competition among airlines, the program is used as an important strategic marketing tool for enhancing business performance. Therefore, airline companies agree that they need to identify customer needs in order to secure loyal customers more effectively. The outcomes from an airline's frequent flyer program can have a variety of effects on international competition. First, the airline can obtain a more dominant position in the air flight market by expanding its air route networks. Second, the availability of flight products for customers can be improved with an increase in flight frequency. Third, the airline can preferentially expand into new markets and thus gain advantages over its competitors. However, there are few empirical studies on the airline frequent flyer program. Accordingly, this study aims to explore the effects of the program on international competition, after reviewing the types of strategic alliance between airlines. Making strategic airline alliances is a worldwide trend resulting from the open skies policy. South Korea also needs to be making open skies agreements more realistic to promote the growth and competition of domestic airlines. The present study is about the performance of the airline frequent flyer program and international competition under the open skies policy. With a sample of five global alliance groups (Star, Oneworld, Wings, Qualiflyer and Skyteam), the study was attempted as an empirical study of the effects that the resource structures and levels of information technology held by airlines in each group have on the type of alliance, and one-way analysis of variance and regression analysis were used to test hypotheses. The findings of this study suggest that both large airline companies and small/medium-size airlines in an alliance group with global networks and organizations are able to achieve high performance and secure international competitiveness. Airline passengers earn mileage points by using non-flight services through an alliance network with hotels, car-rental services, duty-free shops, travel agents and more and show high interests in and preferences for related service benefits. Therefore, Korean airline companies should develop more aggressive marketing programs based on multilateral alliances with other services including hotels, as well as with other airlines.

  • PDF

Development of a Stock Trading System Using M & W Wave Patterns and Genetic Algorithms (M&W 파동 패턴과 유전자 알고리즘을 이용한 주식 매매 시스템 개발)

  • Yang, Hoonseok;Kim, Sunwoong;Choi, Heung Sik
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.1
    • /
    • pp.63-83
    • /
    • 2019
  • Investors prefer to look for trading points based on the graph shown in the chart rather than complex analysis, such as corporate intrinsic value analysis and technical auxiliary index analysis. However, the pattern analysis technique is difficult and computerized less than the needs of users. In recent years, there have been many cases of studying stock price patterns using various machine learning techniques including neural networks in the field of artificial intelligence(AI). In particular, the development of IT technology has made it easier to analyze a huge number of chart data to find patterns that can predict stock prices. Although short-term forecasting power of prices has increased in terms of performance so far, long-term forecasting power is limited and is used in short-term trading rather than long-term investment. Other studies have focused on mechanically and accurately identifying patterns that were not recognized by past technology, but it can be vulnerable in practical areas because it is a separate matter whether the patterns found are suitable for trading. When they find a meaningful pattern, they find a point that matches the pattern. They then measure their performance after n days, assuming that they have bought at that point in time. Since this approach is to calculate virtual revenues, there can be many disparities with reality. The existing research method tries to find a pattern with stock price prediction power, but this study proposes to define the patterns first and to trade when the pattern with high success probability appears. The M & W wave pattern published by Merrill(1980) is simple because we can distinguish it by five turning points. Despite the report that some patterns have price predictability, there were no performance reports used in the actual market. The simplicity of a pattern consisting of five turning points has the advantage of reducing the cost of increasing pattern recognition accuracy. In this study, 16 patterns of up conversion and 16 patterns of down conversion are reclassified into ten groups so that they can be easily implemented by the system. Only one pattern with high success rate per group is selected for trading. Patterns that had a high probability of success in the past are likely to succeed in the future. So we trade when such a pattern occurs. It is a real situation because it is measured assuming that both the buy and sell have been executed. We tested three ways to calculate the turning point. The first method, the minimum change rate zig-zag method, removes price movements below a certain percentage and calculates the vertex. In the second method, high-low line zig-zag, the high price that meets the n-day high price line is calculated at the peak price, and the low price that meets the n-day low price line is calculated at the valley price. In the third method, the swing wave method, the high price in the center higher than n high prices on the left and right is calculated as the peak price. If the central low price is lower than the n low price on the left and right, it is calculated as valley price. The swing wave method was superior to the other methods in the test results. It is interpreted that the transaction after checking the completion of the pattern is more effective than the transaction in the unfinished state of the pattern. Genetic algorithms(GA) were the most suitable solution, although it was virtually impossible to find patterns with high success rates because the number of cases was too large in this simulation. We also performed the simulation using the Walk-forward Analysis(WFA) method, which tests the test section and the application section separately. So we were able to respond appropriately to market changes. In this study, we optimize the stock portfolio because there is a risk of over-optimized if we implement the variable optimality for each individual stock. Therefore, we selected the number of constituent stocks as 20 to increase the effect of diversified investment while avoiding optimization. We tested the KOSPI market by dividing it into six categories. In the results, the portfolio of small cap stock was the most successful and the high vol stock portfolio was the second best. This shows that patterns need to have some price volatility in order for patterns to be shaped, but volatility is not the best.

Determinants of Consumer Preference by type of Accommodation: Two Step Cluster Analysis (이단계 군집분석에 의한 농촌관광 편의시설 유형별 소비자 선호 결정요인)

  • Park, Duk-Byeong;Yoon, Yoo-Shik;Lee, Min-Soo
    • Journal of Global Scholars of Marketing Science
    • /
    • v.17 no.3
    • /
    • pp.1-19
    • /
    • 2007
  • 1. Purpose Rural tourism is made by individuals with different characteristics, needs and wants. It is important to have information on the characteristics and preferences of the consumers of the different types of existing rural accommodation. The stud aims to identify the determinants of consumer preference by type of accommodations. 2. Methodology 2.1 Sample Data were collected from 1000 people by telephone survey with three-stage stratified random sampling in seven metropolitan areas in Korea. Respondents were chosen by sampling internal on telephone book published in 2006. We surveyed from four to ten-thirty 0'clock afternoon so as to systematic sampling considering respondents' life cycle. 2.2 Two-step cluster Analysis Our study is accomplished through the use of a two-step cluster method to classify the accommodation in a reduced number of groups, so that each group constitutes a type. This method had been suggested as appropriate in clustering large data sets with mixed attributes. The method is based on a distance measure that enables data with both continuous and categorical attributes to be clustered. This is derived from a probabilistic model in which the distance between two clusters in equivalent to the decrease in log-likelihood function as a result of merging. 2.3 Multinomial Logit Analysis The estimation of a Multionmial Logit model determines the characteristics of tourist who is most likely to opt for each type of accommodation. The Multinomial Logit model constitutes an appropriate framework to explore and explain choice process where the choice set consists of more than two alternatives. Due to its ease and quick estimation of parameters, the Multinomial Logit model has been used for many empirical studies of choice in tourism. 3. Findings The auto-clustering algorithm indicated that a five-cluster solution was the best model, because it minimized the BIC value and the change in them between adjacent numbers of clusters. The accommodation establishments can be classified into five types: Traditional House, Typical Farmhouse, Farmstay house for group Tour, Log Cabin for Family, and Log Cabin for Individuals. Group 1 (Traditional House) includes mainly the large accommodation establishments, i.e. those with ondoll style room providing meals and one shower room on family tourist, of original construction style house. Group 2 (Typical Farmhouse) encompasses accommodation establishments of Ondoll rooms and each bathroom providing meals. It includes, in other words, the tourist accommodations Known as "rural houses." Group 3 (Farmstay House for Group) has accommodation establishments of Ondoll rooms not providing meals and self cooking facilities, large room size over five persons. Group 4 (Log Cabin for Family) includes mainly the popular accommodation establishments, i.e. those with Ondoll style room with on shower room on family tourist, of western styled log house. While the accommodations in this group are not defined as regards type of construction, the group does include all the original Korean style construction, Finally, group 5 (Log Cabin for Individuals)includes those accommodations that are bedroom western styled wooden house with each bathroom. First Multinomial Logit model is estimated including all the explicative variables considered and taking accommodation group 2 as base alternative. The results show that the variables and the estimated values of the parameters for the model giving the probability of each of the five different types of accommodation available in rural tourism village in Korea, according to the socio-economic and trip related characteristics of the individuals. An initial observation of the analysis reveals that none of variables income, the number of journey, distance, and residential style of house is explicative in the choice of rural accommodation. The age and accompany variables are significant for accommodation establishment of group 1. The education and rural residential experience variables are significant for accommodation establishment of groups 4 and 5. The expenditure and marital status variables are significant for accommodation establishment of group 4. The gender and occupation variable are significant for accommodation establishment of group 3. The loyalty variable is significant for accommodation establishment of groups 3 and 4. The study indicates that significant differences exist among the individuals who choose each type of accommodation at a destination. From this investigation is evident that several profiles of tourists can be attracted by a rural destination according to the types of existing accommodations at this destination. Besides, the tourist profiles may be used as the basis for investment policy and promotion for each type of accommodation, making use in each case of the variables that indicate a greater likelihood of influencing the tourist choice of accommodation.

  • PDF

A Study of Competency for R&D Engineer on Semiconductor Company (반도체 기술 R&D 연구인력의 역량연구 -H사 기업부설연구소를 중심으로)

  • Yun, Hye-Lim;Yoon, Gwan-Sik;Jeon, Hwa-Ick
    • 대한공업교육학회지
    • /
    • v.38 no.2
    • /
    • pp.267-286
    • /
    • 2013
  • Recently, the advanced company has been sparing no efforts in improving necessary core knowledge and technology to achieve outstanding work performance. In this rapidly changing knowledge-based society, the company has confronted the task of creating a high value-added knowledge. The role of R&D workforce that corresponds to the characteristic and role of knowledge worker is getting more significant. As the life cycle of technical knowledge and skill shortens, in every industry, the technical knowledge and skill have become essential elements for successful business. It is difficult to improve competitiveness of the company without enhancing the competency of individual and organization. As the competency development which is a part of human resource management in the company is being spread now, it is required to focus on the research of determining necessary competency and to analyze the competency of a core organization in the research institute. 'H' is the semiconductor manufacturing company which has a affiliated research institute with its own R&D engineers. Based on focus group interview and job analysis data, vision and necessary competency were confirmed. And to confirm whether the required competency by job is different or not, analysis was performed by dividing members into workers who are in charge of circuit design and design before process development and who are in the process actualization and process development. Also, this research included members' importance awareness of the determined competency. The interview and job analysis were integrated and analyzed after arranging by groups and contents and the analyzed results were resorted after comparative analysis with a competency dictionary of Spencer & Spencer and competency models which are developed from the advanced research. Derived main competencies are: challenge, responsibility, and prediction/responsiveness, planning a new business, achievement -oriented, training, cooperation, self-development, analytic thinking, scheduling, motivation, communication, commercialization of technology, information gathering, professionalism on the job, and professionalism outside of work. The highly required competency for both jobs was 'Professionalism'. 'Attitude', 'Performance Management', 'Teamwork' for workers in charge of circuit design and 'Challenge', 'Training', 'Professionalism on the job' and 'Communication' were recognized to be required competency for those who are in charge of process actualization and process development. With above results, this research has determined the necessary competency that the 'H' company's affiliated research institute needs and found the difference of required competency by job. Also, it has suggested more enthusiastic education methods or various kinds of education by confirming the importance awareness of competency and individual's level of awareness about the competency.

Development of Topic Trend Analysis Model for Industrial Intelligence using Public Data (텍스트마이닝을 활용한 공개데이터 기반 기업 및 산업 토픽추이분석 모델 제안)

  • Park, Sunyoung;Lee, Gene Moo;Kim, You-Eil;Seo, Jinny
    • Journal of Technology Innovation
    • /
    • v.26 no.4
    • /
    • pp.199-232
    • /
    • 2018
  • There are increasing needs for understanding and fathoming of business management environment through big data analysis at industrial and corporative level. The research using the company disclosure information, which is comprehensively covering the business performance and the future plan of the company, is getting attention. However, there is limited research on developing applicable analytical models leveraging such corporate disclosure data due to its unstructured nature. This study proposes a text-mining-based analytical model for industrial and firm level analyses using publicly available company disclousre data. Specifically, we apply LDA topic model and word2vec word embedding model on the U.S. SEC data from the publicly listed firms and analyze the trends of business topics at the industrial and corporate levels. Using LDA topic modeling based on SEC EDGAR 10-K document, whole industrial management topics are figured out. For comparison of different pattern of industries' topic trend, software and hardware industries are compared in recent 20 years. Also, the changes of management subject at firm level are observed with comparison of two companies in software industry. The changes of topic trends provides lens for identifying decreasing and growing management subjects at industrial and firm level. Mapping companies and products(or services) based on dimension reduction after using word2vec word embedding model and principal component analysis of 10-K document at firm level in software industry, companies and products(services) that have similar management subjects are identified and also their changes in decades. For suggesting methodology to develop analysis model based on public management data at industrial and corporate level, there may be contributions in terms of making ground of practical methodology to identifying changes of managements subjects. However, there are required further researches to provide microscopic analytical model with regard to relation of technology management strategy between management performance in case of related to various pattern of management topics as of frequent changes of management subject or their momentum. Also more studies are needed for developing competitive context analysis model with product(service)-portfolios between firms.