• Title/Summary/Keyword: inflammatory protein

Search Result 2,289, Processing Time 0.027 seconds

Xanthium strumarium suppresses degranulation and pro-inflammatory cytokines secretion on the mast cells (비만세포에서의 창이자의 탈과립 및 pro-inflammatory cytokines 분비량에 미치는 영향)

  • Lyu, Ji-Hyo;Yoon, Hwa-Jung;Hong, Sang-Hoon;Ko, Woo-Shin
    • The Journal of Korean Medicine Ophthalmology and Otolaryngology and Dermatology
    • /
    • v.21 no.3
    • /
    • pp.82-93
    • /
    • 2008
  • Objective: Previously, the methanol extracts of the semen of Xanthium strumsrium could involved anti-inflammatory effects in lipopolysaccharide (LPS)-stimulated Raw 264,7 cells, We evaluated the anti-allergic effects of X. strumarium on rat basophilic leukemia (RBL-2H3) cells, Methodes : To investigate the effect of X. strumarium on the phorbol 12-myristate 13-acetate (PMA) and calcium ionophore A23187-induced RBL-2H3 cells. The effects of X. strumarium on the degranulation and the pro-inflammatory cytokines secretion and expression from RBL-2H3 cells were evaluated with $\beta$-hexosaminidase assay, ELISA, and RT-PCR analysis, In addition, we examined the effects of X. strumarium on nuclear factor (NF)-${\kappa}B$ activation and $I{\kappa}B-\alpha$ degradation using Western blot analysis. Results : X. strumarium inhibited degranulation and secretions and expressions of pro-inflammatory cytokines, such as tumor necrosis factor-alpha ($TNF-\alpha$), interleukin (IL)-4 and cyclooxygenase (COX)-2, on stimulated RBL-2H3 cells, however, X. strumarium not affect cell viability. In stimulated RBL-2H3 cells, the protein expression level of nuclear factor-kappa B (NF-${\kappa}B$) was decreased in the nucleus by X. strumarium. In addition, X. strumarium suppressed the degradation of inhibitory protein $I{\kappa}B-{\alpha}$ protein in RBL-2H3 cells. Conclusion : These results suggest that X. strumarium inhibits the degranulation and secretion of pro-inflammatory cytokines through blockade of NF-${\kappa}B$ activation and I $I{\kappa}B-{\alpha}$ degradation.

  • PDF

Inhibitory Effect of Salvia officinalis on the Inflammatory Cytokines and Inducible Nitric Oxide Synthasis in Murine Macrophage RAW264.7 (RAW 264.7 Cell에서 세이지에 의한 염증성 Cytokine 및 iNOS억제 효과)

  • 현은아;이혜자;윤원종;박수영;강희경;김세재;유은숙
    • YAKHAK HOEJI
    • /
    • v.48 no.2
    • /
    • pp.159-164
    • /
    • 2004
  • Primary pro-inflammatory cytokines are a trio: tumor necrosis- $\alpha$ (TNF-$\alpha$), interleukine-$\beta$ (IL-$\beta$), and interleukine-6 (IL-6). These cytokines initiate and regulate the acute-phase inflammatory response during infection, trauma, or stress and appear to play an important role in the immune process. Nitric oxide (NO) is a multi-functional mediator, which plays an important role in regulating various biological functions in vivo. NO production by inducible nitric oxide synthase (iNOS) in macrophages is essential for the defense mechanisms against microorganisms and tumor cells. However, over-expression of iNOS by various stimuli, resulting in over-production of NO, contributes to the pathogenesis of septic shock and some inflammatory and auto-immune disease. Solvent fractions of sage ( Salvia officinalis L.), which is cultivated in Jeju-Do, was assayed for their effects on TNF-$\alpha$ and IL-6 production in LPS-stimulated RAW 264.7 macrophages. Hexane and ethylacetate (EtOAc) fraction of sage inhibited the protein and mRNA expression of TNF-$\alpha$ and IL-6 in LPS stimulated RAW 264.7 cells at the concentration of 100 $\mu\textrm{g}$/$m\ell$. Also, incubation of RAW 264.7 cells with the fraction of hexane or EtOAc (50 $\mu\textrm{g}$/$m\ell$) inhibited the LPS induced nitrite accumulation and the LPS/IFN-${\gamma}$ induced iNOS protein. And this inhibition of iNOS protein is concordant with the inhibition of iNOS mRNA expression. Above results suggest that extract of sage may have anti-inflammatory activity through the inhibition of pro-inflammatory cytokines (TNF-$\alpha$, IL-1$\beta$, IL-6), iNOS and NO.

Korean Red Ginseng exerts anti-inflammatory and autophagy-promoting activities in aged mice

  • Kim, Jin Kyeong;Shin, Kon Kuk;Kim, Haeyeop;Hong, Yo Han;Choi, Wooram;Kwak, Yi-Seong;Han, Chang-Kyun;Hyun, Sun Hee;Cho, Jae Youl
    • Journal of Ginseng Research
    • /
    • v.45 no.6
    • /
    • pp.717-725
    • /
    • 2021
  • Background: Korean Red Ginseng (KRG) is a traditional herb that has several beneficial properties including anti-aging, anti-inflammatory, and autophagy regulatory effects. However, the mechanisms of these effects are not well understood. In this report, the underlying mechanisms of anti-inflammatory and autophagy-promoting effects were investigated in aged mice treated with KRG-water extract (WE) over a long period. Methods: The mechanisms of anti-inflammatory and autophagy-promoting activities of KRG-WE were evaluated in kidney, lung, liver, stomach, and colon of aged mice using semi-quantitative reverse transcription polymerase chain reaction (RT-PCR), quantitative RT-PCR (qRT-PCR), and western blot analysis. Results: KRG-WE significantly suppressed the mRNA expression levels of inflammation-related genes such as interleukin (IL)-1β, IL-8, tumor necrosis factor (TNF)- α, monocyte chemoattractant protein-1 (MCP-1), and IL-6 in kidney, lung, liver, stomach, and colon of the aged mice. Furthermore, KRG-WE downregulated the expression of transcription factors and their protein levels associated with inflammation in lung and kidney of aged mice. KRG-WE also increased the expression of autophagy-related genes and their protein levels in colon, liver, and stomach. Conclusion: The results suggest that KRG can suppress inflammatory responses and recover autophagy activity in aged mice.

Effects of 3'-isovaleryl-4'-senecioylkhellactone from Peucedanum japonicum Thunberg on PMA-Stimulated Inflammatory Response in A549 Human Lung Epithelial Cells

  • Hwang, Daseul;Ryu, Hyung Won;Park, Ji-Won;Kim, Jung-Hee;Kim, Doo-Young;Oh, Jae-Hoon;Kwon, Ok-Kyoung;Han, Sang-Bae;Ahn, Kyung-Seop
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.1
    • /
    • pp.81-90
    • /
    • 2022
  • Peucedanum japonicum Thunberg (PJT) has been used in traditional medicine to treat colds, coughs, fevers, and other inflammatory diseases. The goal of this study was to investigate whether 3'-isovaleryl-4'-senecioylkhellactone (IVSK) from PJT has anti-inflammatory effects on lung epithelial cells. The anti-inflammatory effects of IVSK were evaluated using phorbol 12-myristate 13-acetate (PMA)-stimulated A549 cells and regular human lung epithelial cells as a reference. IVSK reduced the secretion of the inflammatory mediators interleukin (IL)-8 and monocyte chemoattractant protein-1 (MCP-1), and the mRNA expression of IL-6, IL-8, MCP-1, and IL-1β. Additionally, it inhibited the phosphorylation of IκB kinase (IKK), p65, Iκ-Bα, and mitogen-activated protein kinases (MAPKs) p38, JNK, and ERK in A549 cells stimulated with PMA. Moreover, the binding affinity of activator protein-1 (AP-1) and nuclear factor-κB (NF-κB) was significantly reduced in the luciferase assay, while nuclear translocation was markedly inhibited by IVSK in the immunocytochemistry. These findings indicate that IVSK can protect against inflammation through the AP-1 and NF-κB pathway and could possibly be used as a lead compound for the treatment of inflammatory lung diseases.

Genomic DNA Extracted from Lactiplantibacillus plantarum Attenuates Porphyromonas gingivalis Lipopolysaccharide (LPS)-Induced Inflammatory Responses via Suppression of Toll-Like Receptor (TLR)-Mediated Mitogen-Activated Protein Kinase (MAPK) and Nuclear Factor-κB (NF-κB) Signaling Pathways

  • Young Hyeon Choi;Bong Sun Kim;Seok-Seong Kang
    • Food Science of Animal Resources
    • /
    • v.43 no.5
    • /
    • pp.938-947
    • /
    • 2023
  • In the present study, we aimed to examine the inhibition of genomic DNA from Lactiplantibacillus plantarum (LpDNA) on Porphyromonas gingivalis lipopolysaccharide (PgLPS)-induced inflammatory responses in RAW264.7 cells. Pretreatment with LpDNA for 15 h significantly inhibited PgLPS-induced mRNA expression and protein secretion of interleukin (IL)-1β, IL-6, and monocyte chemoattractant protein-1. LpDNA pretreatment also reduced the mRNA expression of Toll-like receptor (TLR)2 and TLR4. Furthermore, LpDNA inhibited the phosphorylation of mitogen-activated protein kinases (MAPKs) and the activation of nuclear factor-κB (NF-κB) induced by PgLPS. Taken together, these findings demonstrate that LpDNA attenuates PgLPS-induced inflammatory responses by regulating MAPKs and NF-κB signaling pathways through the suppression of TLR2 and TLR4 expression.

Effect of Sanyeoleumja on Inflammatory Response of RAW 264.7 Cells (RAW 264.7 cell의 염증반응에 대한 산열음자(散熱飮子)의 항염증 효과)

  • Kim, Tae Yeon
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.34 no.1
    • /
    • pp.7-13
    • /
    • 2020
  • Sanyeoleumja (SY) is the traditional Korean medicinal prescription for the treatment of inflammatory diseases of eyes. In this study, the anti-inflammatory effects of SY water extract were investigated. To measure the anti-inflammatory effects of SY, we examined the productions of inflammatory factor including nitric oxide (NO), prostaglandin E2 (PGE2), inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), interleukin-6 (IL-6), interleukin-1β (IL-1β) in lipopolysaccharide (LPS)-induced RAW 264.7 cells. SY inhibited NO and PGE2 production in a dose dependent manner and decreased the protein and mRNA expression of iNOS and COX-2. Also, SY decreased the mRNA expression of interleukin-6 (IL-6) and interleukin-1β (IL-1β). In conclusion, SY downregulated LPS-induced inflammatory factor productions, which could be a clinical basis for inflammatory diseases.

The Experimental Study on Antioxidant, Anti-inflammatory Effects of the Boeum-jeon (BEJ) (보음전의 항산화, 항염증 효능에 관한 실험연구)

  • Su-Kyung Kim;Seong-Hee Cho;Seung-Jeong Yang
    • The Journal of Korean Obstetrics and Gynecology
    • /
    • v.36 no.3
    • /
    • pp.1-24
    • /
    • 2023
  • Objectives: Boeum-jeon (BEJ) is a herbal formula composed 8 Korean medicinal herbs and is traditionally used to treat inflammatory diseases. In this study, the authors tried to confirm the antioxidant efficacy of BEJ and its anti-inflammatory effect in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells. Methods: In this experiment, results of BEJ on the following two were measured as follows: (1) Antioxidant effects was measured by DPPH Radical scavenging Activity, ABTS Radical scavenging Activity. (2) Anti-Inflammatory effects were evaluated by the production amount of ROS, NO, Cytokine (PGE2, IL-1β, IL-6, TNF-α), COX-2, iNOS, TNF-α, IL-1β, IL-6, HO-1, NQO1 (the previous seven are "mRNA Expression"), COX-2, iNOS, TNF-α, IL-1β, IL-6, HO-1, NQO1, NRF2 (the previous eight are "Protein Expression") ERK, JNK, p38 (the previous three are "Protein Phosphorylation") in LPS-stimulated RAW 264.7 cells. Results: The experimental measurement results are as follows: (1) DPPH Radical scavenging Activity, ABTS Radical scavenging Activity increased in a concentration -dependent manner in the BEJ-treated group. (2) As a result of measuring anti-inflammatory efficacy, the production of ROS, NO, and Cytokine (PGE2, TNF-α, IL-1β, IL-6) in the BEJ-administered group was significantly reduced compared to the control group. (3) Among mRNA Expression levels, COX-2, iNOS, IL-1β, IL-6 and TNF-α was significantly decreased in a concentration-dependent manner than in the control group, and HO-1 and NQO1 were significantly increased in a concentration -dependent manner than in the control group. (4) Among the Protein Expression levels, COX-2, iNOS, IL-1β, IL-6 and TNF-α was significantly decreased in a concentration -dependent manner compared to the control group, and HO-1, NQO1 and NRF2 was significantly increased in a concentration-dependent manner compared to the control group. (5) As a result of Protein Phosphorylation, ERK, p38 and JNK was significantly decreased compared to the control group in a concentration-dependent manner. Conclusions: Boeum-jeon has been experimentally confirmed to have antioxidant and anti-inflammatory effects, and if the evidence for efficacy is reinforced through further studies such as in vivo studies and clinical trials in the future, it can be effectively used to treat various inflammatory diseases such as bladder inflammation and chronic pelvic inflammation.

Anti-Inflammatory and Antioxidative Effects of Gracilaria textorii Ethanol Extract in LPS-PG-Stimulated Human Gingival Fibroblast-1 Cells (사람 치은섬유모세포에서 잎꼬시래기 에탄올 추출물의 항염증 및 항산화 효과)

  • Park, Chungmu;Yoon, Hyunseo
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.7 no.4
    • /
    • pp.61-69
    • /
    • 2019
  • Purpose : Human gingival fibroblast cell is one of the the main cell types in periodontal tissue, which they can show anti-inflammatory activity through the production of numerous lines of inflammatory mediators such as inducible nitric oxide synthase (iNOS), cyclooxygenase (COX)-2 and interleukins. Porphyromonas gingivalis, one of the oral pathogens, has reported to play a critical role in the development of periodontal diseases. This study aimed to investigate anti-inflammatory and antioxidative activities of Gracilaria textorii ethanol extract (GTEE) in P. gingivalis derived lipopolysaccharide (LPS-PG) stimulated human gingival fibroblast (HGF)-1 cell line. Methods : In order to analyze anti-inflammatory and antioxidative activities of GTEE in HGF-1 cell line, NOS enzyme activity, expression levels of iNOS, COX-2, NAD(P)H quinone dehydrogenase (NQO)1 and their transcription factors were estimated by Griess reaction and western hybridization. Results : LPS-PG induced overexpression of iNOS and COX-2, which was significantly attenuated by GTEE treatment in a dose-dependent manner without any cytotoxicity. In addition, intracellular NOS activity was in accordance with the result of iNOS expression. Due to important role in the regulation of inflammatory responses, phosphorylated status of p65 and c-jun, each subunit of nuclear factor (NF)-κB and activator protein (AP)-1, was also dose-dependently ameliorated by GTEE treatment. One of phase II enzymes, NQO1, and its transcription factor, nuclear factor erythroid 2-related factor 2 (Nrf2), were analyzed since elevated phase II enzyme expression inhibited inflammatory response, which was significantly elevated by GTEE treatment in HGF-1 cell line. Conclusion : In conclusion, GTEE mitigated LPS-PG-stimulated inflammatory responses by attenuating NF-κB and AP-1 activation as well as accelerating NQO1 and Nrf2 expression in HGF-1 cell line. These results indicate that GTEE might be utilized a promising strategy for potential anti-inflammatory agent in periodontal diseases.

Aqueous extract of Jigal-san ameliorates acute inflammatory responses in RAW 264.7 cells and rats (NF-𝜅B 및 MAPK억제를 통한 지갈산(止渴散) 물추출물의 염증억제효과)

  • Jeong, Deok Ja;Park, Sang Mi;Kim, Sang Chan
    • Herbal Formula Science
    • /
    • v.29 no.4
    • /
    • pp.205-227
    • /
    • 2021
  • Objectives : Jigal-san (JGS, 止渴散) has been used in East Asia including Korea, Japan and China for the treatment of breast inflammatory disorders and severe thirst. JGS originated from Euimunpalbeob (醫門八法; Yimenbafa) composed of Lonicerae Flos and Taraxaci Herba. According to previous studies Lonicerae Flos and Taraxaci Herba have an anti-inflammatory effect, respectively. But, there is no studies regarding on the effects of JGS in the immunological activities. The present study evaluated the anti-inflammatory effects of JGS in vitro and in vivo. Methods : Cell viability was evaluated by MTT assay, and NO was evaluated by content of the nitrite content in culture medium. TNF-α, IL-1β and IL-6 were quantified by ELISA. The protein expression of NF-κB, MAPKs, and iNOS were assessed by western blot analysis. Furthermore, the effects of JGS on acute inflammation were observed in rat paw edema model. Results : The JGS ameliorates the LPS-activated changes in the protein expression of NF-κB, p-JNK, and iNOS, as well as the production of NO and pro-inflammatory cytokines. In rat paw edema study, administration of 0.3 and 1.0 g/kg of JGS for 4 consecutive days inhibited the carrageenan (CA)-induced increases of edema and iNOS expression. Conclusions : These results demonstrate that JGS has anti-inflammatory effect in LPS-stimulated RAW 264.7 cells through decreasing the production of inflammatory mediators, via suppression of the NF-κB and MAPK pathways (JNK, not p-38 and ERK). In addition, the results of the CA-induced paw edema indicate that JGS ameliorates an inflammatory edema. Therefore, the present study could provide scientific evidence for the anti-inflammatory effect of JGS as well as the underlying mechanisms.

PEP-1-GLRX1 protein exhibits anti-inflammatory effects by inhibiting the activation of MAPK and NF-κB pathways in Raw 264.7 cells

  • Shin, Min Jea;Kim, Dae Won;Choi, Yeon Joo;Cha, Hyun Ju;Lee, Sung Ho;Lee, Sunghou;Park, Jinseu;Han, Kyu Hyung;Eum, Won Sik;Choi, Soo Young
    • BMB Reports
    • /
    • v.53 no.2
    • /
    • pp.106-111
    • /
    • 2020
  • Glutaredoxin 1 (GLRX1) has been recognized as an important regulator of redox signaling. Although GLRX1 plays an essential role in cell survival as an antioxidant protein, the function of GLRX1 protein in inflammatory response is still under investigation. Therefore, we wanted to know whether transduced PEP-1-GLRX1 protein inhibits lipopolysaccharide (LPS)- and 12-O-tetradecanoyl phorbol-13-acetate (TPA)-induced inflammation. In LPS-exposed Raw 264.7 cells, PEP-1-GLRX1 inhibited cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS), activation of mitogen activated protein kinases (MAPKs) and nuclear factor-kappaB (NF-κB) expression levels. In a TPA-induced mouse-ear edema model, topically applied PEP-1-GLRX1 transduced into ear tissues and significantly ameliorated ear edema. Our data reveal that PEP-1-GLRX1 attenuates inflammation in vitro and in vivo, suggesting that PEP-1-GLRX1 may be a potential therapeutic protein for inflammatory diseases.