References
- Medzhitov R (2008) Origin and physiological roles of inflammation. Nature 454, 428-435 https://doi.org/10.1038/nature07201
- Tsaryk R, Peters K, Barth S, Unger RE, Schamweber D and Kirkpatrick CJ (2013) The role of oxidative stress in pro-inflammatory activation of human endothelial cells on Ti6A14V alloy. Biomaterials 34, 8075-8085 https://doi.org/10.1016/j.biomaterials.2013.07.030
- Fujiwara N and Kobayashi K (2005) Macrophages in inflammation. Curr Drug Targets Inflamm Allergy 4, 281-286 https://doi.org/10.2174/1568010054022024
- Hiraiwa K and van Eeden SF (2013) Contribution of lung macrophages to the inflammatory responses induced by exposure to air pollutants. Mediators Inflamm 2013, 619523
- Jin SE, Kim OS, Yoo SR et al (2016) Anti-inflammatory effect and action mechanisms of traditional herbal formula Gamisoyo-san in RAW 264.7 macrophages. BMC Complement Altern Med 16, 219 https://doi.org/10.1186/s12906-016-1197-7
- Shen YZ, Sun Z and Guo X (2015) Citral inhibits lipopolysaccharide-induced acute lung injury by activating PPAR-gamma. Eur J Pharmacol 747, 45-51 https://doi.org/10.1016/j.ejphar.2014.09.040
- Guo C, Yang L, Luo J et al (2016) Sophoraflavanone G from Sophora alopecuroides inhibits lipopolysaccharide-induced RAW 264.7 cells by targeting PI3K/Akt, JAK/STAT and Nrf2/HO-1 pathways. Int Immunopharmacol 38, 349-356 https://doi.org/10.1016/j.intimp.2016.06.021
- Ducut Sigala JL, Bottero V, Young DB, Shevchenko A, Mercurio M and Verma IM (2004) Activation of transcription factor NF-kappaB requires ELKS, an IkappaB kinase regulatory subunit. Science 304, 1963-1967 https://doi.org/10.1126/science.1098387
- Wang Y, Cui Y, Cao F, Qin Y, Li W and Zhang J (2015) Gangliosdie GD 1a suppresses LPS-induced pro-inflammatory cytokines in RAW 264.7 macrophages by reducing MAPKs and NF-kappaB signaling pathways through TLR4. Int Immunopharmacol 28, 136-145 https://doi.org/10.1016/j.intimp.2015.05.044
-
Li MY, Sun L, Niu XT et al (2018) Astaxanthin protects lipopolysaccharide-induced inflammatory response in Channa argus through inhibiting
$NF-{\kappa}B$ and MAPKs signaling pathways. Fish Shellfish Immunol 86, 280-286 -
Haque MA, Jantan I and Harikrishnan H (2018) Zerumbone suppresses the activation of inflammatory mediators in LPS-stimulated U937 macrophages through MyD88-dependent
$NF-{\kappa}B$ /MAPK/PI3K-Akt signaling pathways. Int Immunopharmacol 55, 312-322 https://doi.org/10.1016/j.intimp.2018.01.001 - Arthur JS and Ley SC (2013) Mitogen-activated protein kinases in innate immunity. Nat Rev Immunol 13, 679-692 https://doi.org/10.1038/nri3495
- Hwang PA, Chien SY, Chan YL et al (2011) Inhibition of lipopolysaccharide (LPS)-induced inflammatory responses by Sargassum hemiphyllum sulfated polysaccharide extract in RAW 264.7 macrophage cells. J Agric Food Chem 59, 2062-2068 https://doi.org/10.1021/jf1043647
- Lillig CH, Berndt C and Holmgren A (2008) Glutaredoxin systems. Biochim Biophys Acta 1780, 1304-1317 https://doi.org/10.1016/j.bbagen.2008.06.003
- Okuda M, Inoue N, Azumi H et al (2001) Expression of glutaredoxin in human coronary arteries: its potential role in antioxidant protection against atherosclerosis. Arterioscler Thromb Vasc Biol 21, 1483-1487 https://doi.org/10.1161/hq0901.095550
- Pai HV, Starke DW, Lesnefsky EJ, Hoppel CL and Mieyal JJ (2007) What is the functional significance of the unique location of glutaredoxin 1 (GRx1) in the intermembrane space of mitochondria? Antioxid Redox Signal 9, 2027-2033 https://doi.org/10.1089/ars.2007.1642
- Peltoniemi M, Kaarteenaho-Wiik R, Saily M et al (2004) Expression of glutaredoxin is highly cell specific in human lung and is decreased by transforming growth factor-beta in vitro and in interstitial lung diseases in vivo. Hum Pathol 35, 1000-1007 https://doi.org/10.1016/j.humpath.2004.04.009
- Cater MA, Materia S, Xiao Z et al (2014) Glutaredoxin1 protects neuronal cells from copper-induced toxicity. Biometals 27, 661-672 https://doi.org/10.1007/s10534-014-9748-1
- Ryu EJ, Kim DW, Shin MJ et al (2018) PEP-1-glutaredoxin 1 protects against hippocampal neuronal cell damage from oxidative stress via regulation of MAPK and apoptotic signaling pathways. Mol Med Rep 18, 2216-2228 https://doi.org/10.3892/mmr.2018.9176
- Joliot A and Prochiantz A (2004) Transduction peptides: from technology to physiology. Nat Cell Biol 6, 189-196 https://doi.org/10.1038/ncb0304-189
- Dolgova NV, Nokhrin S, Yu CH, George GN and Dmitriev OY (2013) Copper chaperone Atox1 interacts with the metal-binding domain of Wilson's disease protein in cisplatin detoxification. Biochem J 454, 147-156 https://doi.org/10.1042/BJ20121656
- Wadia JS and Dowdy SF (2002) Protein transduction technology. Curr Opin Biotechnol 13, 52-56 https://doi.org/10.1016/S0958-1669(02)00284-7
- van den Berg A and Dowdy SF (2011) Protein transduction domain delivery of therapeutic macromolecules. Curr Opin Biotechnol 22, 888-893 https://doi.org/10.1016/j.copbio.2011.03.008
- Morris MC, Depollier J, Mery J, Heitz F and Divita G (2001) A peptide carrier for the delivery of biologically active proteins into mammalian cells. Nat Biotechonol 19, 1173-1176 https://doi.org/10.1038/nbt1201-1173
- Yeo HJ, Yeo EJ, Shin MJ et al (2018) Protective effects of Tat-DJ-1 protein against streptozotocin-induced diabetes in a mice model. BMB Rep 51, 362-367 https://doi.org/10.5483/BMBRep.2018.51.7.101
- Yeo HJ, Shin MJ, Yeo EJ et al (2019) Tat-CIAPIN1 inhibits hippocampal neuronal cell damage through the MAPK and apoptotic signaling pathways. Free Radic Biol Med 135, 68-78 https://doi.org/10.1016/j.freeradbiomed.2019.02.028
-
Kim DW, Shin MJ, Choi YJ et al (2018) Tat-ATOX1 inhibits inflammatory responses via regulation of MAPK and
$NF-{\kappa}B$ pathways. BMB Rep 51, 654-659 https://doi.org/10.5483/BMBRep.2018.51.12.248 - Kim MJ, Park M, Kim DW et al (2015) Transduced PEP-1-PON1 proteins regulate microglial activation and dopaminergic neuronal death in a Parkinson's disease model. Biomaterials 64, 45-56 https://doi.org/10.1016/j.biomaterials.2015.06.015
- Kim YN, Jung HY, Eum WS et al (2014) Neuroprotective effects of PEP-1-carbonyl reductase 1 against oxidativestress-induced ischemic neuronal cell damage. Free Radic Biol Med 69, 181-196 https://doi.org/10.1016/j.freeradbiomed.2014.01.006
- Lee SJ, Kang HK, Choi YJ et al (2018) PEP-1-paraoxonase 1 fusion protein prevents cytokine-induced cell destruction and impared insulin secretion in rat insulinoma cells. BMB Rep 51, 538-543 https://doi.org/10.5483/BMBRep.2018.51.10.181
-
Chung S, Sunder IK, Yao H, Ho YS and Rahman I (2010) Glutaredoxin 1 regulates cigarette smoke-mediated lung inflammation through differential modulation of
$I{\kappa}B$ kinases in mice: impact on histone acetylation. Am J Physiol Lung Cell Mol Physiiol 299, L192-L203 https://doi.org/10.1152/ajplung.00426.2009 - Malik G, Nagy N, Ho YS, Maulik N and Das DK (2008) Role of glutaredoxin-1 in cardioprotection: an insight with Glrx1 transgenic and knockout animals. J Mol Cell Cardiol 44, 261-269 https://doi.org/10.1016/j.yjmcc.2007.08.022
- Meyer LM, Lofgren S, Ho YS et al (2009) Absence of glutaredoxn1 increase lens susceptibility to oxidative stress induced by UVR-B. Exp Eye Res 89, 833-839 https://doi.org/10.1016/j.exer.2009.07.020
- Aesif SW, Anathy V, Kuipers I et al (2011) Ablation of glutaredoxin-1 attenuates lipopolysaccharide-induced lung inflammation and alveolar macrophage activation. Am J Respir Cell Mol Biol 44, 491-499 https://doi.org/10.1165/rcmb.2009-0136OC
- Shi Q, Cao J, Fang L et al (2014) Geniposde suppresses LPS-induced nitric oxide, PGE2 and inflammatory cytokine by downregulating NF-kappaB, MAPK and AP-1 signaling pathways in macrophages. Int Immunopharmacol 20, 298-306 https://doi.org/10.1016/j.intimp.2014.04.004
- Chen H, Sohn J, Zhang L, Tian J, Chen S and Bjeldanes LF (2014) Anti-inflammatory effects of chicanine on murine macrophage by down-regulating LPS-induced inflammatory cytokines in IkappaBalpha/MAPK/ERK signaling pathways. Eur J Pharmacol 724, 168-174 https://doi.org/10.1016/j.ejphar.2013.12.016
-
Yodkeeree S, Ooppachai C, Pompimon W and Limtrakul P (2018) O-methybulbocapnine and dicentrine suppress LPS-induced inflammatory responses by blocking
$NF-{\kappa}B$ and AP-1 inactivation through inhibition MAPKs and Akt signaling in RAW264.7 macrophages. Biol Pharm Bull 41, 1219-1227 https://doi.org/10.1248/bpb.b18-00037 - Plotnikov A, Zehorai E, Procaccia S and Seger R (2011) The MAPK cascades: signaling components, nuclear roles and mechanisms of nuclear translocation. Biochim Biophys Acta 1813, 1619-1633 https://doi.org/10.1016/j.bbamcr.2010.12.012
- Qiang Z, Ko CH, Siu WS et al (2018) Inhibitory effect of different Dendrobium species on LPS-induced inflammation in macrophages via suppression of MAPK pathways. Chin J Nat Med 16, 481-489
-
Harikrishnan H, Jantan I, Haque MA and Kumolosasi E (2018) Anti-inflammatory effect of phyllanthus amarus Schum. & Thonn. Through inhibition of
$NF-{\kappa}B$ , MAPK, and PI3K-Akt signaling pathways in LPS-induced human macrophages. BMC Complement Altern Med 18, 224 https://doi.org/10.1186/s12906-018-2289-3 -
Islam SU, Lee JH, Shehzad A, Ahn EM, Lee YM and Lee YS (2018) Decursinol angelate inhibits LPS-induced macrophages polarization through modulation of the
$NF-{\kappa}B$ and MAPK signaling pathways. Molecules 23, 1880 https://doi.org/10.3390/molecules23081880 - Reynaert NL, van der Vliet A, Gulal AS et al (2006) Dynamic redox control of NF-kappaB through glutaredoxin-regulated S-glutathionylation of inhibitory kappaB kinase beta. Proc Natl Acad Sci U S A 103, 13086-13091 https://doi.org/10.1073/pnas.0603290103
- Reynaert NL, Wouters EF and Janssen-Heininger YM (2007) Modulation of glutaredoxin-1 expression in a mouse model of allergic airway disease. Am J Respir Cell Mol Biol 36, 147-151 https://doi.org/10.1165/rcmb.2006-0259RC
- Poynter ME, Irvin CG and Janssen-Heininger YM (2002) Rapid activation of nuclear factor-kappaB in airway epithelium in a murine model of allergic airway inflammation. Am J Pathol 160, 1325-1334 https://doi.org/10.1016/S0002-9440(10)62559-X
- Shelton MD, Distler AM, Kern TS and Mieyal JJ (2009) Glutaredoxin regulates autocrine and paracrine proinflammatory responses in retinal glial (Muller) cells. J Biol Chem 284, 4760-4766 https://doi.org/10.1074/jbc.M805464200
- El-Andaloussi S, Holm T and Langel U (2005) Cell-penetrating peptides: mechanisms and applications. Curr Pharm Des 11, 3597-3611 https://doi.org/10.2174/138161205774580796
- Stanley PL, Steiner S, Havens M and Tramposch KM (1991) Mouse skin inflammation induced by multiple topical applications of 12-O-tetradecanoyl phorbol-13-acetate. Skin Pharmacol 4, 262-271 https://doi.org/10.1159/000210960
- Kim MJ, Jeong HJ, Kim DW et al (2014) PEP-1-PON1 protein regulates inflammatory response in raw 264.7 macrophages and ameliorates inflammation in a TPA-induced animal model. PLoS One 9, e86034 https://doi.org/10.1371/journal.pone.0086034
- Park MK, Cho SA, Lee HJ et al (2012) Suppression of transglutaminase-2 involved in anti-inflammatory actions of glutasamine in 12-O-tetradecanoyl phorbol-13-acetateinduced skin inflammation. Biomol Ther 20, 380-385 https://doi.org/10.4062/biomolther.2012.20.4.380
-
Kulkarni NM, Muley MM, Jaji MS et al (2015) Topical atorvastatin ameliorates 12-O-tetradecanoylphorbol-13-acetate induced skin inflammation by reducing cutaneous cytokine levels and
$NF-{\kappa}B$ activation. Arch Pharm Res 28, 1238-1247 https://doi.org/10.1007/s12272-014-0496-0 - Kamiya T, Takeuchi K, Fukudome S, Hara H and Adachi T (2018) Copper chaperone antixodiant-1, Atox-1, is involved in the induction of SOD3 in THP-1 cells. Biometals 31, 61-68 https://doi.org/10.1007/s10534-017-0067-1
- Kim SH, Kim MO, Gao P et al (2005) Overexpression of extracellular superoxide dismutase (EC-SOD) in mouse skin plays a protective role in DMBA/TPA-induced tumor formation. Oncol Res 15, 333-341 https://doi.org/10.3727/096504005776449725
- Bradford M (1976) A rapid and sensitive method for the quantitation of microgram quantities utilizing the principle of protein-dye binding. Anal Biochem 72, 248-254 https://doi.org/10.1016/0003-2697(76)90527-3
- Ahn EH, Kim DW, Shin MJ et al (2014) PEP-1-PEA-15 protects against toxin-induced neuronal damage in a mouse model of Parkinson's disease. Biochim Biophys Acta 1840, 1686-1700 https://doi.org/10.1016/j.bbagen.2014.01.004